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Figure 1: Left: MouseRing is an IMU ring-shaped device that facilitates continuous on-surface finger tracking. Middle: MouseRing 
is an always-available pointing technique in VR, AR, large-screen interactions, etc. Right: MouseRing supports both single-ring 
and dual-ring interaction on diverse surfaces. 

ABSTRACT 
Tracking fine-grained finger movements with IMUs for continu-
ous 2D-cursor control poses significant challenges due to limited 
sensing capabilities. Our findings suggest that finger-motion pat-
terns and the inherent structure of joints provide beneficial physical 
knowledge, which lead us to enhance motion perception accuracy 
by integrating physical priors into ML models. We propose MouseR-
ing, a novel ring-shaped IMU device that enables continuous finger-
sliding on unmodified physical surfaces like a touchpad. A motion 
dataset was created using infrared cameras, touchpads, and IMUs. 
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We then identified several useful physical constraints, such as joint 
co-planarity, rigid constraints, and velocity consistency. These prin-
ciples help refine the finger-tracking predictions from an RNN 
model. By incorporating touch state detection as a cursor move-
ment switch, we achieved precise cursor control. In a Fitts’ Law 
study, MouseRing demonstrated input efficiency comparable to 
touchpads. In real-world applications, MouseRing ensured robust, 
efficient input and good usability across various surfaces and body 
postures. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile com-
puting; Pointing devices. 
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1 INTRODUCTION 
Target selection is one of the most fundamental tasks in human-
computer interaction. Traditional methods, such as the mouse and 
touchpad, have been widely adopted due to their intuitive design, 
efficiency, and precision. However, their physical attributes present 
certain constraints, particularly in mobile environments. The rise of 
ubiquitous computing devices, such as AR/VR and large-screen dis-
plays, has generated demands for always-available input solutions. 
While remote controllers[3, 43] and computer-vision-based finger-
pointing techniques[44, 57] have found their niche, their complex 
setup and large computational power requirements restrict them 
from being always accessible. 

We propose that wearable IMU rings could potentially serve as 
an always-available touch interface[4]. Our goal is to retain the 
efficiency and comfort characteristic of touchpad interactions while 
optimizing the device’s form factor to enhance its portability and 
availability at all times. IMU rings are smaller and lower-powered 
compared to cameras[45] or electromagnetic sensors[9, 48], mak-
ing them suitable for long-term daily use. However, precise finger 
tracking based on IMU rings[29, 62] is challenging due to limited 
information and noisy signals. While researchers have attempted 
physical mapping and machine learning methods to solve gesture 
classification[16, 24, 39, 41] and typing tasks[19, 20, 30], few prior 
works have demonstrated the use of IMU rings for high-precision 
2D cursor control and target selection tasks. 

We propose MouseRing, a ring-formed IMU device that can ac-
curately track fingertip movement trajectories. By incorporating 
touch state detection as a cursor movement switch, MouseRing 
enables always-available touchpad interaction. In our work, we fol-
low a data-driven research process. We first uncover some physical 
constraints as prior during finger-sliding based on data analysis. 
We then train ML models for fingertip velocity prediction. Finally, 
we integrate the knowledge of both for more stable and accurate 
tracking. 

We construct a multimodal motion dataset of sliding fingers us-
ing OptiTrack, pressure touchpads, and IMUs. The dataset contains 
contact points, nail tips, and several key joints of the index fingers. 
Following the research approaches in computer vision[36, 37], we 
model the index finger as articulated objects in 3D space with in-
terconnected joints. We propose several hypotheses that satisfy 
certain constraint relationships. By analyzing the data (analysis 
process detailed in Appendix A), we verify the existence of co-
planarity, velocity correlation, rigid constraints, and other physical 
relationships between joint nodes. 

We use an end-to-end RNN model to predict the instantaneous 
velocity of fingertips. We then quantify the degree of conformity 
between the predicted velocity and the physical constraints with 
confidence scores. The confidence score serves as a weight to cor-
rect and smooth the trajectory. Using the dataset for offline simula-
tion, we compare the performance of different model settings, ring 

numbers, and sliding modes. In a purely kinematics-based baseline 
model, the tracking error is significant. End-to-end models shows 
acceptable performance. By incorporating physical constraints, the 
results become more stable and accurate. Dual MouseRing can ac-
curately select small targets, with a mean angular error 𝜃𝑙𝑒𝑟𝑟𝑜𝑟 of 
6.6◦ , while a single MouseRing has a 𝜃𝑙𝑒𝑟𝑟𝑜𝑟 of 12.3◦ but is more 
lightweight. 

We evaluate the input efficiency of MouseRing in ideal labora-
tory conditions and real-world situations. In the Fitts’ Law Study, 
MouseRing achieves input efficiency close to laptop touchpads (MT 
= 658.5ms vs. 629.1ms). In a real-world large-screen interaction 
task, single and dual MouseRing can both achieve robustly and 
quickly 2D cursor control on surfaces of different hardness and 
flatness and in standing and sitting postures. Its speed is similar 
to that of mouse devices and significantly outperforms AirMouse 
devices, which share the same in-air interaction paradigm as visual 
hand tracking and remote controllers. Participants appreciated the 
naturalness of the interaction and found wearing MouseRing more 
comfortable than hand-held devices. 

In summary, our main contributions include: 
• We propose MouseRing, a ring-formed IMU device that tracks 
index finger sliding on unmodified physical surfaces and sup-
ports accurate and robust continuous pointing interactions. 

• We model finger sliding and identify several physical priors 
between key joints of the index finger. 

• We propose a precise and stable fingertip-tracking algorithm 
that incorporates physical knowledge into machine learning 
methods. 

2 RELATED WORK 

2.1 Always-available Pointing Technique 
The emergence of various always-available pointing techniques 
aims to strike a balance between convenience and performance 
to meet requirements in different scenarios, such as AR/VR and 
large displays. The most prevalent approach relies on cameras 
and CV algorithms to recognize finger-pointing[44, 57]. Finger-
pointing in mid-air has already become the standard paradigm 
for AR/VR interaction[15]. To accommodate hands-free situations, 
head movement[13, 58] and eye-tracking[10, 23, 56, 61] for cursor 
control have also been proposed. Researchers also combined cam-
eras with other sensors such as EMG[52], IMU[21], and touchpads[55] 
to improve input efficiency. Camera-based solutions offer high pre-
cision but require sensors deployed in the environment or on the 
headset. They also present privacy problems[22]. Consequently, 
researchers have begun exploring the use of other smart devices for 
cursor control tasks. The first category includes dedicated devices 
like laser pointers[25, 31] and remote controllers[3, 43], which offer 
good precision but are not easily portable for users. 

The second category involves using daily-carry smart devices, 
such as smartphones[2, 5, 17, 26] and smartwatches[27, 28], to 
facilitate pointing input. Smart rings also fall into this category. 
Due to their small size and portability, smart rings can free users 
from handheld devices like controllers and environment-deployed 
sensors such as cameras, offering a universally applicable pointing 
technique. Additionally, smart rings stand out in certain scenarios 
compared to smartphones and smartwatches as they are always 
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Table 1: Prior Work on Ring-shaped devices for finger-tracking or target selection tasks 

Work Sensor Number Position 
Additional 
Device 

Calibration Interaction Paradigm 
Support 

Finger Tracking 

Support 2D 

cursor control 
Finexus[9] Electromagnet 4 Fingertip Wristband ✗ In-air pointing ✓ ✗

AuraRing[48] Electromagnet 1 Proximal phalanx Wristband ✓ In-air pointing ✓ ✗

Yuki Kubo[32] Pressure Board 1 Intermediate phalanx - ✗ On-surface sliding ✗ ✓ 

Magic Finger[59] Camera 1 Fingerpad - ✗ On-surface sliding ✓ ✗

LightRing[29] 
IMU + 

Infrared Sensor 
1 Proximal phalanx Infrared Sensor ✓ On-surface sliding ✓ ✓ 

Mouse on a Ring[62] IMU 1 Proximal phalanx - ✗ In-air tilting ✗ ✓ 

Anywhere Touch[47] IMU 1 Fingertip - ✗ On-surface sliding ✓ ✗

MouseRing IMU 1/2 
Proximal phalanx 

(Intermediate phalanx) 
- ✗ On-surface sliding ✓ ✓ 

worn and do not need to be adjusted or taken from pockets. At 
the same time, we aim for the ring device to maintain high input 
efficiency comparable to traditional pointing input methods like 
touchpads and mice. In summary, our research on MouseRing aims 
at delivering an always-available pointing interface with greater 
convenience while maintaining satisfactory usability. 

2.2 Ring-based Interactions 
The primary usability goal of MouseRing is to enable efficient and 
accurate input on diverse surfaces while ensuring comfort and 
convenience through its always-available nature. To summarize 
the previous work, we have listed prior works that utilize ring-
shaped devices for finger-tracking or target selection tasks in Table 
1. We have outlined them based on three usability aspects: the 
comfort and portability of the setup, the interaction paradigm, and 
the sensing capability. 

Finexus[9] and AuraRing[48] utilize multiple electromagnetic 
sensors to position the fingertip relative to the wrist nodes, thereby 
supporting in-air pointing for target selection. However, this neces-
sitates wearing additional wristbands or watches and at least four 
sensors for positioning based on their relative distances. Finexus 
and AuraRing utilize an in-air pointing interaction paradigm, where 
users control the cursor by adjusting the orientation of their wrist 
or fingers. In contrast, MouseRing offers an interaction mode simi-
lar to traditional mouse devices, where users slide their fingers on 
flat surfaces. Both paradigms are easy to use, but prolonged in-air 
interaction may quickly lead to fatigue. Yuki Kubo[32] has imple-
mented a touchpad-like interaction by installing a small pressure 
plate on the side of the ring. Magic Finger[59] achieves mouse-like 
functionality by using a camera on the finger pad to detect rela-
tive movement between the finger and the surface. While these 
interactions are highly intuitive, placing sensors on the finger pad 
or touchpads on the side of the finger significantly compromises 
comfort, impacting everyday activities. 

IMU rings offer the advantage of being lighter, featuring a low-
power, small-size setup, ensuring users can comfortably wear and 
use smart rings for extended periods. However, their sensing capa-
bilities are somewhat limited. Despite considerable research imple-
menting various gesture-based interactions[11, 16, 24, 39, 41] and 
Bayesian inference-based typing inputs[20, 30, 38] through IMU 
rings, there have been few efforts to track the fingertip for continu-
ous 2D cursor control directly. LightRing[29] first proposed using 

an IMU to estimate lateral finger movements and an infrared sensor 
to perceive finger bending to estimate forward and backward move-
ments. However, this approximation lacks precision and requires a 
complex calibration phase. Mouse on a Ring[62] does not directly 
track finger movement but controls cursor movement through an 
airmouse mechanism, using the tilt and acceleration changes of the 
IMU ring in the air. AnywhereTouch[47] uses the attitude angle of 
the fingertip IMU, calculates the speed of each finger joint through 
inverse kinematics, and achieves a 93% accuracy rate in uni-stroke 
three-classification tasks. This approach has been inspiring for our 
research approach to physics-informed machine learning. However, 
the finger-tracking results obtained directly from inverse kinemat-
ics are limited and do not support target selection tasks. Placing 
an IMU on the fingertip can also interfere with daily activities. 
Our work has systematically studied and modeled fingertip motion 
behavior, enhancing the fingertip tracking precision against prior 
work through the use of physics-informed machine learning. This 
has allowed us to realize the concept of precise touchpad interac-
tion everywhere. Furthermore, the requirement of being always 
available also brings forth the usability demands of comfort and 
convenience. MouseRing meets these criteria by being lightweight, 
calibration-free, and robust to different surfaces, thereby ensuring 
a positive wearing and using experience in real-world scenarios. 

2.3 Hand Modelling 
In Human-Computer Interaction (HCI) and Computer Vision (CV), 
human hands are often modeled as articulated objects in three-
dimensional space with interconnected joints[12, 49]. Kuch et al.[33] 
and Lee et al.[36, 37] have proposed simplified hand skeleton mod-
els with 26 and 27 degrees of freedom (DOF) that systematically 
describe the movements of individual joints. Many studies on ges-
ture recognition[1, 50, 51, 54] followed their works and simplified 
models for specific tasks to achieve state-of-the-art performances. 
For example, Ahmad et al.[1] achieved 30 FPS gesture recognition 
using a 19-DOF simplified model. Spurr et al.[54] integrated hand 
constraints to achieve weakly-supervised gesture recognition. 

We believe incorporating physical knowledge into the pipeline 
of sensing finger-sliding behaviors in MouseRing can also benefit 
tracking accuracy. However, several challenges exist. Firstly, the 
pressure between fingertips and surfaces can cause forced bend-
ing of finger joints and ligament deformation[34], rendering Lee’s 
constraints[36] for relaxed hands no longer valid. Secondly, the 
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Figure 2: Different wearing configurations and finger-sliding modes. (a) Single ring on the proximal phalanx. (b) Single ring on 
the intermediate phalanx. (c) Double rings on both phalanxes. (d) Rested Wrist. (e) Rested Thumb and Middle finger. (f) Rested 
Palm. (g) Hand freely suspended in the air. 

impact of skin deformation must be considered when we observe 
finger movements using an IMU ring fixed on the skin. Lastly, fin-
ger sliding only represents a small subspace of hand movement, 
potentially resulting in additional beneficial physical motion rela-
tionships between joints. 

Our study builds upon previously proposed 3D hand models[37] 
and focuses on finger-sliding input tasks. We employ data-driven 
research methods to propose new motion relationships and disprove 
invalid physical constraints. The physical knowledge can provide 
assistance in developing stable and accurate MouseRing fingertip 
tracking algorithms. 

3 INTERACTION DESIGN SPACE 
The input action of MouseRing inherits the standard touchpad input 
for users. Users can control the cursor and turn the physical surface 
into a virtual touchpad by touching and sliding their index fingers 
on the surface. The sliding action is very straightforward for users 
because the physical contact position between the finger and the 
surface maps well to the cursor on the virtual interface. However, 
for IMU sensing, different ring numbers, wearing positions, and 
the movement modes of the entire hand during finger sliding may 
significantly impact fingertip tracking accuracy. Different ways of 
wearing rings and finger-sliding patterns create a tradeoff between 
the naturalness of wearing&interacting and the algorithm’s track-
ing performance. While fewer rings and freer sliding give users a 
more comfortable input experience, they can also lead to poorer 
accuracy and bring users a worse sense of control. The fluency of 
input and the sense of control in the interaction process make up 
the overall user experience of MouseRing. 

Hence, we believe exploring possible ring positions and finger-
sliding patterns is necessary. Evaluating their impact on tracking 
performance in subsequent research will enable us to choose the 
most natural wearing and interaction method that meets the accu-
racy requirements. 

3.1 Ring Number and Position 
MouseRing has three ring-wearing configurations, including double-
ring and two single-ring configurations. Under the double-ring con-
figuration (Fig.2(c)), users wear two rings with 6-axis IMU sensors 
on their index finger’s intermediate phalanx and proximal phalanx. 
Under the single-ring configuration (Fig.2(a)-(b)), users wear a ring 
on either phalanx. 

For the ring position, previous research[18] has shown that users 
prefer to use their index finger for touch input. Therefore, we chose 

to place rings on the index finger. Although placing the IMU sensor 
on the distal phalanx provides the richest information due to its 
proximity to the fingertip[53], it would significantly impact users’ 
daily activities. Therefore, we only consider the phalanxes, which 
are further back in position. 

Regarding the number, placing more rings on one finger may 
help better estimate the angle between finger bones. We conducted 
a pilot study and interviewed 12 users to determine the maximum 
number of rings they could tolerate for an extended period. All 
users agreed that one ring was acceptable, and most users (9 in 12) 
considered that two rings were acceptable despite having a minor 
impact on daily activities. Most users rejected more rings due to 
interference with daily activities, comfort, and aesthetics. Given 
that the pilot study is preliminary and solely based on intuition, we 
will further evaluate the comfort level of wearing varying numbers 
of rings under real-world conditions. 

3.2 Finger-sliding Mode 
IMU rings predict finger movements by observing the local acceler-
ations of the skeletal region where they are worn and establishing 
a relationship with the corresponding fingertip movements. There-
fore, the prediction accuracy is greatly influenced by the chosen 
finger-sliding mode. It’s obvious that the level of hand restriction 
presents a trade-off between accuracy and comfort. Performing 
finger sliding when the entire hand is suspended in the air with-
out any constraints (Fig.2(g)) is quite effortless and free for users. 
However, at this point, IMU-based tracking is impractical in princi-
ple, because the uniform motion of the entire hand cannot be per-
ceived by accelerometers or gyroscopes. Prior work has explored 
finger-sliding under the fixation of the middle finger and thumb 
(LightRing[29]) or the entire hand (Anywhere Touch[47]). In our 
work, we propose three different finger-sliding modes (Fig.2(d)-(f)) 
with varying degrees of restriction, and systematically compare 
their algorithm tracking accuracy in subsequent research, aiming 
to find an interaction method that satisfies both accurate tracking 
and user-friendliness. 

• Rested Wrist mode (RW): Users keep their wrist rested on 
the surface during each finger-sliding stroke. Each finger 
can bend and move freely. The entire hand can freely rotate 
around the wrist. RW restricts the translation of the palm, 
but the rotation of the palm and the translation of each finger 
are still free. 

• Rested Thumb & Middle Finger mode (RTM): Apart from the 
carpus, users need to keep their middle finger and thumb 
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resting on the surface during each finger-sliding stroke. RTM 
restricts the translation and large-scale rotation of the palm. 
Due to the flexibility of the joints, small-scale rotation still 
exists, and the movement of the index finger is unrestricted. 

• Rested Palm mode (RP): Users need to place their palm rested 
on the surface during each finger-sliding stroke. Under RP, 
both the translation and rotation of the palm are fixed, and 
only the movement of the index finger is unrestricted. 

4 DATA COLLECTION 
In this section, we collected multi-channel motion data of key joints 
on the index finger and the touchpoint during sliding. We used IMU 
sensors, an Optitrack optical tracking system, and a pressure touch-
pad for data collection. We had three main motivations for collecting 
motion data. First, we planned to explore the physical motion model 
of index finger sliding, including the physical relationships and mo-
tion constraints between joints. Secondly, we aimed to design and 
implement the fingertip-tracking algorithm of MouseRing through 
data-driven approaches. Lastly, we also segmented data for touch 
state detection between fingers and surfaces. 

Figure 3: Apparatus for data collection. (a)The arrangement 
of the Optitrack camera array. The participant is inputting 
on a horizontal touchpad. (b) The participant interacting on a 
vertical touchpad.(c) The index finger with two IMUs attached 
and four retroreflective spheres on three joint points and the 
nail tip. (d) Finger-sliding stroke set. 

4.1 Apparatus 
The experimental apparatus is shown in Fig.3. Participants wore 
two IMU rings on their index finger’s intermediate and proximal 
phalange. Participants were instructed to wear the IMU sensors on 
the dorsal side of their fingers. In addition, four 2mm-diameter in-
frared reflective spheres were attached to the metacarpophalangeal 
joint (MCP), proximal interphalangeal joint (PIP), distal interpha-
langeal joint (DIP), and nail tip of the index finger. The four markers 
were pre-labeled in the Optitrack system, allowing us to identify 
which joint each marker corresponds to. Participants were asked 

to slide their index fingers on a pressure touchpad, ensuring con-
stant contact between the fingertip and the touchpad. The touchpad 
recorded the position of the contact point between the fingertip 
and the surface. During the experiment, we sampled the IMU’s 
acceleration and angular acceleration data, the position of the four 
key points of the finger tracked by Optitrack, and the pressure array 
data from the touchpad. 

Each IMU sensor was a 9-axis accelerometer MPU9250. We 
recorded 6-axis acceleration and angular velocity data from the 
sensor and simultaneously logged the IMU’s attitude angles cal-
culated in real time by the attitude estimation algorithm (section 
6.2). We only used the six-axis data of acceleration and angular 
acceleration because we discovered that the uneven magnetic field 
variations in indoor spaces resulted in higher accuracy in 6-axis 
attitude estimation compared to the 9-axis (mentioned in section 
6.2). The IMU frame rate was 200Hz. Each IMU was fixed on an 
adjustable iron ring and connected to an Arduino UNO via DuPont 
wires. During data collection, wired data transmission ensured high 
data quality. However, in real-world user experiments (section 9), 
we utilized a wireless transmission MouseRing prototype to en-
sure a more realistic user experience. The touchpad was the Morph 
Sensal touchpad, which can sense the pressure peak point of the 
touch and return the pressure force and peak point coordinates. 
The touchpad frame rate was 80Hz. We used eight OptiTrack Prime 
13 motion capture cameras to capture the three-dimensional coordi-
nates of the index finger’s joints and the nail tip. The camera array 
was placed 1-2m from the finger to ensure high-precision capture. 
The frame rate of OptiTrack Motive was 200Hz. 

4.2 Participants 
We recruited 12 participants (5 females, aged 20-26, M = 23.6) from 
the university campus. All participants were right-handed and used 
their right index fingers to input. The average length of index 
fingers was respectively 75.7mm(std=1.60) and 79.2 millimeters 
(std=2.79) for females and males, which were close to the existing 
literature[40]. We concluded that our participants’ finger lengths 
can represent the majority of users. 

4.3 Design and Procedure 
Data collection included 2𝑝𝑜𝑠𝑡𝑢𝑟 𝑒𝑠 ∗ 3𝑚𝑜𝑑𝑒𝑠 = 6𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 . Partici-
pants were required to perform finger-sliding input on a horizon-
tally positioned touchpad while sitting and a vertically positioned 
touchpad while standing. For each touchpad orientation, partici-
pants were required to perform data collection sessions using the 
three finger-sliding modes: Rested Wrist mode, Rested Thumb & 
Middle Finger mode, and Rested Palm mode. During each session, 
participants completed 20 different one-stroke finger-sliding move-
ments. 

Fig.3(c) shows the 20 strokes. The 1𝑠𝑡 -16𝑡ℎ one-stroke move-
ments are straight lines in various directions. We divided 360◦ into 
16 equal parts, and the angle between the 𝑖𝑡ℎ line and the positive 
x-axis was 22.5(𝑖 − 1)◦ . These data were used to simulate the user 
moving the cursor in various directions. The 17𝑡ℎ and 18𝑡ℎ one-
stroke movements are clockwise/counter-clockwise circles, which 
simulate the user making small-radius turns and slight adjustments. 
For the 19𝑡ℎ and 20𝑡ℎ one-stroke movements, the participant’s index 
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finger remained stationary, and these data were used as negative 
examples for ML learning. We encouraged participants to perform 
input with various initial postures to cover the entire posture space 
in our dataset. 

In each session, assisted by paper-printed one-stroke images, the 
participants controlled their index fingers to slide 10 times along 
their imaginary direction. Before starting each one-stroke move-
ment, participants needed to tap the touchpad twice quickly. These 
double taps were only used to align the data from different sensors. 
It is worth noting that the stroke directions on paper were only pro-
vided as a reference for the participants. During algorithm optimiza-
tion, we used the actual trajectory captured by the pressure sensors 
and cameras as the ground truth. Each participant completed a total 
of 2(𝑝𝑜𝑠𝑡𝑢𝑟 𝑒𝑠 ) × 3(𝑚𝑜𝑑𝑒𝑠 ) × 20(𝑠𝑡 𝑟 𝑜𝑘𝑒𝑠 ) × 10(𝑡 𝑖𝑚𝑒𝑠 ) = 1200 finger-
sliding strokes. They were allowed to rest for 5 minutes between 
sessions. The entire experiment lasted approximately 100 minutes. 

4.4 Data Pre-processing 
We first unified the data from all channels to 200Hz using linear 
interpolation. Due to the time delay in transmitting OptiTrack 
data, we developed a graphical interface to manually align the 
OptiTrack signal with the other two channels. The double taps 
made by the participants during the experiment left two peaks 
in the z-axis data from the accelerators and the OptiTrack. Two 
annotators independently adjusted the time deviation to align the 
signals, and the labeled time deviation differences between both 
annotators were less than or equal to 2 frames (≤ 0.01𝑠 ). Each 
segment of aligned data has a recording duration of approximately 
10 minutes (around 2000 frames). Each data segment includes about 
200 instances of finger-sliding data, where the finger performs 
uni-stroke gestures on the touchpad. 

4.5 Data Segmentation 
4.5.1 finger-sliding data segmentation. We extracted data segments 
for finger tracking for each finger-sliding movement during the 
uni-stroke gestures. The rising and falling edges of the pressure 
touchpad data were utilized to segment each stroke automatically. 
Additionally, the script automatically filtered out data that was too 
long (over 5 seconds) or too short (less than 0.2 seconds), which 
accidental touches or quick taps could cause. Ultimately, we ob-
tained approximately 14,000 finger-sliding data segments, equal-
izing around 7,000 segments in the horizontal and vertical planes. 
The average length of each data segment is 0.7 seconds (141 frames). 
Each data frame includes information on the three-dimensional co-
ordinates of four key joints, accelerations, attitude angles, angular 
accelerations from two IMUs, and the two-dimensional coordinates 
of the fingertip on the pressure pad. 

4.5.2 touch events segmentation. In addition to tracking the finger-
tip on the surface, our system also requires real-time detection of 
the user’s fingertip contact state with the surface. Therefore, we 
segmented four types of touch events, namely touch-down, touch-
up, touching, and in-air, which are useful for touch state detection. 
For touch-down events, we identified the rising edge of the pressure 
data on the touchpad at frame t and extracted the data from frames 
[t-9, t] as touch-down data. Similarly, we identified the falling edge 
of the pressure data at frame t for touch-up events and extracted 

the data from frames [t, t+9] as touch-up data. Additionally, we ran-
domly selected time windows of 10 frames, where the finger was in 
complete contact with the pressure touchpad, as touching data. We 
set time windows of 10 frames where the finger was completely in 
the air as in-air data. As a result, we obtained 28,000 clipped touch 
event data samples in total. Each event accounted for one-fourth of 
the total dataset. 

5 UNCOVERING PHYSICAL KNOWLEDGE OF 
FINGER-SLIDING 

Although two 6-axis IMU sensors can provide rich motion infor-
mation, it is still far from sufficient to fully reconstruct the in-
dex finger’s motion. In this section, we analyzed the collected 
finger-sliding data segments following the research process of 
"observation-hypothesize-analyze-verify/falsify." We induced sev-
eral motion laws of key joint movement, which would be applied 
as physical knowledge for fingertip tracking. 

5.1 Modeling Index Finger Movement 
We simplified the physical model of the various bones and joints of 
the index finger using a kinematic chain(Fig.4(a)), referencing mod-
eling methods from computer vision[36, 37] and surgical medicine[34]. 
The three joints of the index finger (DIP, PIP, MP) connect the three 
bones of the finger (distal phalanx, intermediate phalanx, proximal 
phalanx) and the carpal bones of the hand. In addition, we also 
introduced the tip of the fingernail, as well as the contact point 
between the fingertip and the surface, because they are also crucial 
in finger sliding. The nail tip and DIP jointly model the vector cor-
responding to the distal phalanx, whose displacement is strongly 
correlated with the displacement of the contact point. The tactile 
sensation brought by the contact point and surface is the most 
intuitive way for users to perceive finger sliding. 

5.2 Constraints on Joint Motion during Finger 
Sliding 

Based on the aforementioned modeling, we propose six hypothe-
ses regarding motion constraints, which are based on existing 
literature[37] and observations. To validate or falsify these hy-
potheses, we employed hypothesis testing on statistical measures 
and visualized the results in Figure 4(b)-(j). We found that several 
assertions regarding finger joint constraints in the natural state 
may not hold when the finger is in a tense state, as the joints and lig-
aments can be passively pulled. Conversely, due to the small-scale 
movements of the joints involved in finger sliding, complex hand 
mechanical movements can be approximated by simpler models in 
local motion spaces. We summarize the conclusions here, while the 
detailed data analysis is presented in Appendix A. 

• Conclusion 1: The squeezing between the plane and the 
index finger leads to 𝜽𝑫 𝑰 𝑷 ≠ 2 

3 𝜽𝑷 𝑰 𝑷 , where 𝜃 𝐷𝐼 𝑃 is defined 
as the angle between the phalanxes connected by the DIP 
joints. 𝜃 𝑃 𝐼 𝑃 is the angle between the phalanxs connected by 
the PIP joint. (Fig.4(b)-(c)) 

• Conclusion 2: The three phalanxes of the index finger are 
in the same plane. (Fig.4(d)) 
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Figure 4: (a) Physical model of the index finger. In the kinematic chain, the nail tip, three joints of the index finger (DIP, PIP, 
MP), and carpus are articulated. (b) The relationship between 𝜃𝐷𝐼 𝑃 and 𝜃𝑃 𝐼 𝑃 . We selected 5 representative participants from the 
initial 12. For P3 and P11, the angular relationship remained consistent. For P6 and P9, the proportionality coefficient was 
no longer 23 . For P5, the relationship no longer stands due to the squeezing between the finger and the plane.. (c) The force 
exerted by the surface on the distal phalanx broke the proportionality relationship between𝜃𝐷𝐼 𝑃 and𝜃 𝑃 𝐼 𝑃 . (d) The distal phalanx, 
intermediate phalanx, and proximal phalanx are in the same plane. (e) The ratio of the phalanxes’ lengths varies significantly 
between individuals. (f) The displacements of the fingertip and the contact point are equal. (g)-(i) MP’s displacement cannot be 
ignored during finger-sliding. (j) There is a strong correlation between the projected velocities of the fingertip, DIP, and PIP. 

• Conclusion 3: Each person’s skeletal length is fixed during 
index finger sliding, but the ratio of the phalanxs’ lengths 
varies significantly between individuals. (Fig.4(e)) 

• Conclusion 4: The displacement of the fingertip projec-
tion on the physical surface is approximately equal to the 
displacement of the contact point. (Fig.4(f)) 

• Conclusion 5: Among all three sliding modes (RW, RTM, 
RP), the displacement of MP cannot be ignored. (Fig.4(g)-(i)) 

• Conclusion 6: There is a strong correlation between the 
projected velocities of the fingertip, DIP, and PIP on the phys-
ical surface. (Fig.4(j), more quantitative analysis in Appendix 
A) 

6 MOUSERING ALGORITHM 
This section introduces the MouseRing algorithm, which aims at 
achieving precise and stable fingertip motion tracking. Our algo-
rithm consists of four key processes, which are also the main techni-
cal contributions of this paper: (1) High-precision IMU attitude 
estimation for smart ring interactions, (2) Fingertip velocity 
prediction based on RNN models, (3) Velocity correction us-
ing physical constraints, and (4) Robust touch-state detection. 

6.1 Overview 
The overall goal of MouseRing is to achieve precise fingertip track-
ing through IMU sensing. We employ an intuitive approach that 
predicts the real-time velocity of the fingertip, accumulates these 
velocities, and updates the sliding trajectory in real-time. As shown 
in Fig.5, we introduce the algorithm pipeline. We use the orienta-
tion of the IMUs worn on the intermediate and proximal phalanx 

of the index finger to represent the spatial orientation of the two 
finger phalanxes. We estimate each bone’s attitude by processing 
the continuously read acceleration and angular acceleration data 
streams. Since the accuracy of the attitude is crucial for calculating 
the ML model and physical constraints, we have carefully opti-
mized the algorithm for hand interaction in attitude estimation. 
Next, we train an RNN-based model to learn from features such 
as finger skeleton attitudes and ring accelerations and to predict 
fingertip velocity. However, black-box probabilistic models suffer 
from unstable predictions and poor interpretability. Therefore, we 
establish several physical constraints based on the attitudes and 
velocity, judge the degree of compliance between the predicted 
instantaneous velocities and physical constraints, and correct the 
velocity. In addition, we also implement touch state detection and 
cursor smoothing to achieve a complete mouse-like target selection 
interaction experience. 

6.2 Attitude Estimation 
We placed an OptiTrack marker on an IMU sensor under rotational 
motion to collect ground truth data. We employed direct integration, 
standard 6-axis complementary filtering, and 9-axis complementary 
filtering methods to estimate the attitude, resulting in average errors 
of 6.63◦ , 3.58◦ , and 9.25◦ . Direct integration of angular accelerations 
led to significant attitude drift due to random environmental noise 
and sensor system bias. On the other hand, indoor environments 
exhibit pronounced and non-uniform variations in magnetic fields, 
with the orientation of the magnetic vector deviating up to 40◦ 

within a 1𝑚 × 1𝑚 area. This significant deviation severely affects 
the accuracy of magnetometer data. Therefore, considering the 
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Figure 5: System overview. We predict the real-time velocity through an RNN model. Then, we correct the velocity with physical 
constraints to achieve accurate and stable tracking. 

aforementioned challenges, we optimized our system within the 
framework of 6-axis attitude estimation. 

We find that as a musculoskeletal movement mechanism, the 
movement of the index finger is smooth. There is no high-frequency 
component in its acceleration and angular acceleration. Thus, we 
recommend using a 1Hz-5Hz Butterworth bandpass filter to filter 
the acceleration signal and a 1Hz-10Hz Butterworth bandpass filter 
for the angular acceleration signal. After removing high-frequency 
noise, we compare the measured acceleration with the ground truth 
obtained by differentiating 3D positions. The error is reduced by 
over 20%. 

Secondly, we apply a passive complementary filter method to 
calculate the attitude of the ring. Similar algorithms[14] were ini-
tially used for attitude estimation of large-scale, high-speed objects 
such as aircraft. We redesign the controller parameters for small-
scale finger movements. We use the Mahony algorithm[14] as the 
framework. Its complementary filter algorithm can be regarded as 
a second-order control system with the characteristic polynomial 
𝑆 2 + 𝐾𝑝 𝑆 + 𝐾𝑖 . 𝐾𝑝 and 𝐾𝑖 can be expressed as 𝐾𝑖 = 𝜔 2 , 𝐾𝑝 = 2𝜁 𝜔 , 
where 𝜔 and 𝜁 represent the cutoff frequency and damping coeffi-
cient. In this control system, the second-order control system has 
the best response when the damping ratio 𝜁 = 0.707[60]. When 𝜔 
is around 1 rad/s, the finger IMU’s attitude estimation has a faster 
response speed and more accurate results. Too small 𝜔 causes an 
attitude drift, while too large 𝜔 results in a significant fluctuation. 
Therefore, we set the parameters as 𝜔 =1.5rad/s and 𝜁 =0.707. We 
use Euler angles (roll, pitch, and yaw) to measure the average error 
of the algorithm. The mean errors are 0.55◦ , 3.12◦ , and 1.65◦ . 

6.3 Machine Learning for Speed Prediction 
We design an RNN model to predict the index finger’s real-time 
velocities of the four key joint points (NailTip, DIP, PIP, and MP). 
We use the Nail Tip instead of the Contact Point of the fingertip 
as the optimization target (Conclusion 4 in Section 5.2). The model 
includes predictions of the MP joint for all input modes because its 
displacement cannot be ignored (Conclusion 5 in Section 5.2). 

We select the filtered acceleration, the filtered angular acceler-
ation, and the attitude obtained from the Mahony algorithm as 

the input features. We use quaternions 𝑄 as input features for the 
IMU attitude, which provides better prediction results than Euler 
angles and direction vectors. Instead of frame-to-frame prediction, 
we use the signals within a 20-frame (0.1s) time window. Thus, 
the model can learn both the current motion state and the recent 
motion trends. Depending on the number of rings, either or both 
of the ring information are utilized. 

The model’s output predicts the real-time velocities of the index 
fingers’ four key points (Nail Tip, DIP, PIP, and MP). The projected 
velocity of the Nail Tip represents the user’s input. The velocity 
predictions of other key points can help correct the velocity of 
the Nail Tip in physical constraints. We average the velocities of 
the last five frames to smooth the displacement jumps caused by 
Optitrack cameras. 

Our model consists of a single-layer LSTM with a hidden state 
size of 32 and two linear layers, followed by RELU as the activation 
function before each linear layer. Let y be the velocity vector of the 
key joints. We design our loss function as: 
𝐿 = 0.2∗(1−𝐶𝑜𝑠 _𝑆𝑖𝑚𝑖𝑙 𝑎𝑟 𝑖 𝑡𝑦 (𝑦𝑝𝑟 𝑒𝑑 , 𝑦𝑡 𝑟𝑢𝑒 ))+0.8∗𝑀 𝑆 𝐸 (𝑦𝑝𝑟 𝑒𝑑 , 𝑦𝑡 𝑟𝑢𝑒 ) 
to increase the weight of the accuracy of velocity direction pre-
diction relative to the accuracy of velocity magnitude prediction 
because, in target selection tasks, people are more sensitive to in-
consistent directions. We implement the above model in Python 
based on the PyTorch framework, with a batch size of 32, and train 
the model to the best using cross-validation. 

6.4 Physics-constrained velocity correction 
The predicted velocities of key points from the ML model are in-
dependent. The independency leads to inconsistency in velocities 
among key points. The predictions between consecutive frames 
are also independent, which leads to instability in the predicted 
velocity. 

The attitude of the skeletons is a slowly changing and relatively 
stable quantity. Using it to establish physical constraint relation-
ships can help establish connections between predicted velocities 
of different joints among frames. Our idea of velocity correction is 
to quantify the degree of conformity between the current predicted 
velocity and the physical constraints with a confidence score. The 
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confidence score serves as a weight to update the correction value 
of the current velocity. The current velocity combines with the his-
torical one to achieve smoother and more stable velocity prediction. 
We find the following physics constraints to be effective. 

Directional consistency: Confidence score 𝐶1 characterizes the 
consistency of the velocity directions of different joints(Conclusion 
6 in 5.2.6). If the consistency is greater than a threshold, the confi-
dence score of the predicted value will be reduced.       

𝛼 1 = arccos⟨ ̂vnailtip∥A, v̂DIPn ∥A⟩ 
𝛼 2 = arccos⟨ ̂vDIP∥A, v̂PIPn ∥A⟩ 
𝛼 3 = arccos⟨ ̂vnailtip∥A, v̂PIPn ∥A⟩ 
𝐶1 = 1 

3 
3 
𝑖 =1 I(𝛼𝑖 ≤ 𝛼𝑖𝑡ℎ𝑟 𝑒𝑠 ) + 1 

3 
3 
𝑖 =1 I(𝛼𝑖 > 𝛼𝑖𝑡ℎ𝑟 𝑒𝑠 ) cos2 (𝛼𝑖 ) 

⟨v1, v2⟩ represents the dot product. Hat denotes the unit vector. 
A is the given horizontal/vertical plane where the index finger is 
sliding. 𝑣 𝐽 𝑜𝑖𝑛𝑡𝑛 ∥𝐴 is the projection of the velocity vector on plane 
A. The values of 𝛼𝑖𝑡ℎ𝑟 𝑒𝑠 are also referenced from 5.2.6. 𝛼 1𝑡ℎ𝑟𝑒𝑠 = 13◦ 

𝛼 2𝑡ℎ𝑟 𝑒𝑠 = 15◦ 𝛼 3𝑡ℎ𝑟 𝑒𝑠 = 30◦ 

Co-planarity: Confidence score 𝐶2 characterizes co-planarity. 
The four key points (NailTip, DIP, PIP, and MP) are always on the 
same plane (Conclusion 2 in 5.2.2). Therefore, their instantaneous 
normal velocity vectors relative to their common plane are also 
coplanar. We have: 

𝐶2 = ( ̂vDIPn − v̂PIPn ) × (v̂PIPn − v̂MPn ) · (v̂nailtipn − v̂DIPn ) 
Hat denotes the unit vector. The subscript “n” represents the com-
ponent of the vector in the normal direction. 

Length consistency: Confidence score C3 characterizes length 
consistency. The points on the same bone have equal instantaneous 
radial velocities due to the rigid body constraint (Conclusion 3 in 
5.2.3). 

𝐶3 = 𝑚𝑖𝑛 ( 
vMP∥L1 

2vDIP∥ L1 

, 
vDIP∥L1 

2vMP∥ L1 

) + 𝑚𝑖𝑛 ( 
vDIP∥L2 

2vPIP∥ L2 

, 
vPIP∥L2 

2vDIP∥ L2 

) 

L1 and L2 are the directional vectors of the intermediate and 
proximal phalanx. They are calculated from the attitude angles of 
the key points in the attitude estimation. 

The overall confidence score, denoted as 𝐶 , is calculated as the 
product of individual constraint confidence scores 𝐶𝑖 . As different 
constraint equations have varying refinement effects on the accu-
racy of velocity estimation, we introduce an exponent parameter 
for each 𝐶𝑖 , which is explored by traversing all possible values to 
achieve the global optimum for velocity prediction. The final confi-
dence score and velocity correction formula are as follows. 𝑣𝑡 is the 
model’s predicted value at time 𝑡 , and 𝑣 𝑡 is the correction value.  

𝐶 = 𝐶 3 
1 · 𝐶 2 

2 · 𝐶3 
ṽ t nailtip = 𝐶 · v t nailtip + (1 − 𝐶 ) · · ̃v t−1 

nailtip 

6.5 Touch State Detection 
To enable tracking the sliding of the finger on the physical surface, 
the system needs to detect in real-time whether the user’s index 
finger is in contact with the surface to exclude the case where the 
finger is hovering in the air. We refer to previous works[18], which 
achieved a 99% accuracy in touch-down event detection. For each 
axis of the 6-axis IMU, we computed the maximum, minimum, mean, 
skewness, and kurtosis within a 10-frame time window. These 

Figure 6: The evaluation metrics and visualization of trajec-
tory prediction using different model settings. 

features, totaling 30 dimensions, were used to classify the data from 
each time window into four categories: touch-down, touch-up, in-
air, and touching, using an SVM model. 

We then employed a state machine to detect the touch state in 
real-time. When the touch state is false, if the touch detector detects 
a touch-down event or continuous touching for five consecutive 
time windows (with 80% overlap between adjacent windows), the 
touch state transitions to true. Conversely, when the touch state 
is true, if the touch detector detects a touch-up event or continu-
ous in-air state for five consecutive time windows, the touch state 
transitions to false. We conducted tests on our dataset. 95.5% of 
finger-sliding interactions were accurately identified in their en-
tirety. When participants’ fingers continuously interacted during 
the user experiment, only 11.8 seconds per hour of fingertip in-air 
state were mistakenly recognized as touch state. The algorithm 
demonstrated robust performance as a switch for touch input. 

6.6 Scaling the Velocities in Different Directions 
For right-handed users, sliding towards the lower left and upper 
right is more effortless than sliding towards the upper left or lower 
right because the natural rotation of the right hand around the wrist 
causes the fingers to move in these two directions. To address this 
issue, we amplify the speed amplitude of the more difficult sliding 
directions. With this optimization, users have a similar subjective 
sliding experience when moving the cursor in all directions. 

6.7 Cursor Filtering 
We further implement the 1€filter[8] for the corrected velocity, 
which performs well in smoothing mouse input. The filter has two 
parameters: the minimum cutoff frequency 𝑓𝐶𝑚𝑖𝑛 and the speed 
coefficient 𝛽 . Reducing the minimum cutoff frequency will reduce 
slow speed jitter, while increasing the speed coefficient will re-
duce speed lag. We select 𝑓𝐶𝑚𝑖𝑛 = 0.004 and 𝛽 = 0.08 to filter the 
corrected mouse displacement in the model calculation. 

7 SIMULATION WITH OFFLINE DATA 
In this section, we use offline data from the finger-sliding dataset 
to simulate the algorithm’s performance under different settings 
and primarily evaluate its effectiveness. We address three research 
questions in the following subsections: 

RQ1: Does fixing some parts of the hand improve predic-
tion accuracy in RTM and RP modes? 

RQ2: What level of accuracy can be achieved under single-
ring and double-ring configurations? 

RQ3: How is MouseRing’s performance compared to RNN 
and finger-kinematics-based methods? 
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7.1 Simulation Set-up 
We utilized data from all 12 participants, trained the model using 
the leave-one-out cross-validation method, and predicted the veloc-
ity within each time window for each user during the uni-stroke 
process of finger-sliding. By integrating the velocities, we simulated 
the predicted fingertip sliding trajectory. This section compared 
the predicted trajectories against the ground truth trajectories from 
Optitrack using the following five metrics in Figure 6: 

• 𝜃𝑙𝑒𝑟𝑟𝑜𝑟 : The angle between the real fingertip displacement 
𝑙𝑡 𝑟 𝑢𝑡ℎ and the predicted displacement 𝑙𝑝𝑟 𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 . It repre-
sents the accuracy of tracking the direction of fingertip mo-
tion over a period of time. 

• 𝜃 𝑣𝑒𝑟𝑟𝑜𝑟 : The angle between the real instantaneous fingertip 
velocity 𝑣𝑡𝑟𝑢𝑡ℎ and the predicted velocity 𝑣𝑝𝑟 𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛 . It rep-
resents the accuracy and stability of tracking the direction 
of fingertip motion. 

• 𝑙𝑒𝑟 𝑟 𝑜𝑟 : The relative error between the fingertip displacement 
𝑙𝑡 𝑟 𝑢𝑡ℎ and the predicted displacement 𝑙𝑝𝑟 𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛 . 

• 𝑥𝑒𝑟𝑟𝑜𝑟 , 𝑦𝑒𝑟𝑟𝑜𝑟 : We define the left-right movement of the fin-
gertip as along the x-axis and forward-backward (horizontal 
plane)/up-down (vertical plane) movement of the fingertip 
as along the y-axis. The absolute errors in the x and y direc-
tions between the real trajectory and the predicted trajectory 
are denoted as dx and dy. 𝑥𝑒𝑟 𝑟 𝑜𝑟 and 𝑦𝑒𝑟𝑟𝑜𝑟 are the relative 
errors of dx and dy with respect to 𝑙𝑡 𝑟 𝑢𝑡 ℎ . 

Table 2 presents the simulation results obtained under different 
datasets, ring configurations, and model settings. For the MouseR-
ing algorithm, we separately trained the models using three dif-
ferent finger-sliding modes’ data. For simulation groups without 
annotated datasets, we report the average error of the three action 
modes (RW, RTM, RP). We also compared the effect of ring position 
and quantity on tracking accuracy by training the models using 
single-ring and dual-ring data. 

As a baseline algorithm, we replicated the kinetic-based model 
from AnywhereTouch[47], an existing work that supports finger 
tracking based on finger-worn IMUs. It uses the change in pitch 
angle and the relation formula 𝜃𝐷𝐼 𝑃 = 23𝜃𝑃 𝐼 𝑃 to estimate forward 
and backward displacement. It predicts the left and right movement 
by mapping changes in yaw angle to the displacement. Further-
more, we conducted a simple ablation study where we removed 
the physical-constrained correction from the MouseRing algorithm 
and evaluated the performance of the end-to-end RNN. Addition-
ally, during the training process of the RNN model, we selectively 
masked the components of each axis of the 6-axis IMU to assess 
the utility of each axis. 

7.2 Finger-sliding Modes 
We separately trained models for the three sliding modes (Rested 
Wrist, Rested Thumb & Middle Finger, and Rested Palm). We initially 
expected that the RP and RTM modes, which have stronger hand 
constraints and fewer degrees of freedom, would be more accurately 
predicted. However, the simulation results only partially met our 
expectations. 

Considering both the wearing & input experience and fingertip 
tracking accuracy, RW (Rested Wrist) is the best input mode for 
overall interaction. Among the three modes, the RP mode has the 

Table 2: Performance of the model under different settings. 

𝜃𝑙 𝑒𝑟 𝑟 𝑜𝑟 𝜃 𝑣𝑒𝑟 𝑟 𝑜 𝑟 𝑙𝑒𝑟 𝑟 𝑜 𝑟 𝑥𝑒𝑟 𝑟 𝑜𝑟 𝑦𝑒𝑟 𝑟 𝑜𝑟 

Dual ring (RW dataset) 7.51◦ 15.66◦ 14.70mm 7.16mm 12.84mm 

Dual ring (RTM dataset) 7.36◦ 14.51◦ 13.97mm 6.78mm 12.21mm 

Dual ring (RP dataset) 5.34◦ 13.97◦ 13.60mm 6.39mm 12.00mm 

Proximal single ring 12.33◦ 22.56◦ 14.89mm 7.87mm 12.64mm 

Intermediate single ring 13.23◦ 28.04◦ 24.01mm 8.91mm 22.30mm 

Dual ring 6.61◦ 14.53◦ 14.08mm 6.80mm 12.33mm 

Dual ring (kinetic-based model) 36.64◦ 32.38◦ 50.27mm 29.43mm 40.75mm 

Dual ring (end-to-end RNN) 8.75◦ 32.80◦ 13.94mm 6.44mm 12.36mm 

Dual ring (RNN, 𝑎𝑥 removed) 12.10◦ 34.22◦ 14.69mm 8.01mm 12.31mm 

Dual ring (RNN, 𝑎𝑦 removed) 8.69◦ 32.17◦ 14.09mm 6.82mm 12.33mm 

Dual ring (RNN, 𝑎𝑧 removed) 9.48◦ 33.49◦ 16.47mm 7.68mm 14.57mm 

Dual ring (RNN, 𝜔𝑥 removed) 17.01◦ 32.76◦ 28.11mm 6.97mm 27.24mm 

Dual ring (RNN, 𝜔 𝑦 removed) 8.74◦ 32.92◦ 13.91mm 6.88mm 12.09mm 

Dual ring (RNN, 𝜔𝑧 removed) 15.13◦ 35.75◦ 20.39mm 11.70mm 16.70mm 

smallest 𝜃𝑙 𝑒 𝑟 𝑟 𝑜𝑟 of 5.34◦ , while RW and RTM have similar 𝜃𝑙 𝑒 𝑟 𝑟 𝑜𝑟 
of 7.51◦ and 7.36◦ . On the one hand, fixing the entire palm on 
the surface does make the prediction more accurate. However, the 
improvement in accuracy is less significant compared to the loss of 
interaction comfort. On the other hand, while placing the thumb and 
index finger on the surface causes less loss of interaction comfort, it 
does not provide much help to the model’s prediction. We conclude 
that the RW mode allows for natural input and maintains accuracy 
similar to the other two input modes. 

7.3 Ring Number and Position 
The accuracy of the single-ring configurations is lower than the 
double-ring configuration, with displacement angle errors of 13.23◦ 

and 12.33◦ , respectively, compared to the 6.61◦ of the double-ring 
sensor configuration. For the proximal phalanx ring, 𝑦𝑒 𝑟 𝑟 𝑜 𝑟 in-
creased significantly from 12% to 22.3%, resulting in a 𝑙𝑒 𝑟 𝑟 𝑜𝑟 of 
24.01%. This can be attributed to the fact that, due to its longer 
distance from the fingertip, the proximal ring exhibits smaller varia-
tions in orientation when the fingertip moves forward or backward. 
Thus, the information from the IMU is not sufficient to predict the 
y-direction displacement. 

In conclusion, for the single-ring configuration, it is more suitable 
to wear the ring on the intermediate phalanx. Despite the decreased 
accuracy, we argue the accuracy is enough for non-fine-grained tar-
get selection. In daily-life scenarios, the single-ring configurations 
are more comfortable to use due to their lighter wear. 

7.4 Machine Learning vs. Kinematic-based 
Modelling 

The kinematic-based method has a significant systematic bias in 
the prediction direction for two reasons. Firstly, the 𝜃 𝐷 𝐼 𝑃 = 2 

3𝜃𝑃 𝐼 𝑃 
relationship does not hold when the finger slides, leading to a 
highly inaccurate forward and backward displacement prediction. 
Secondly, differences in the wearing position of the ring, finger 
length, and finger sliding habits among different users can result in 
significant prediction errors during angle mapping. RNN model can 
learn the sliding action mode well, achieving a 𝜃𝑙 𝑒 𝑟 𝑟 𝑜𝑟 of 8.75◦ and 
a 𝑙𝑒 𝑟 𝑟 𝑜𝑟 of 13.94%. However, its 𝜃 𝑣𝑒𝑟 𝑟 𝑜𝑟 reaches 32.8◦ , indicating 
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that the instantaneous speed is very inaccurate on occasion. After 
incorporating the physical constraints into the MouseRing algo-
rithm, the physical constraints reject inferior speed prediction. The 
𝜃 𝑣𝑒 𝑟 𝑟 𝑜𝑟 is significantly reduced to 14.53◦ . The 𝜃𝑙 𝑒 𝑟 𝑟 𝑜𝑟 also benefits 
from more stable velocity prediction. The general results demon-
strate that physics-based knowledge can assist machine learning, 
making finger-sliding predictions more stable and accurate. 

By comparing models with and without removing 6-axis features, 
we also analyzed the useful information provided by each axis of the 
IMU sensor. 𝑎𝑥 and 𝜔𝑧 contribute significantly to the prediction of 
displacement in the x-direction. We attribute this to the integration 
of x-axis acceleration related to x-axis displacement. Also, the z-axis 
angular velocity strongly correlates with fingertip movement when 
the palm rotates around the wrist. After removing these features 
from the model, the error in x-axis displacement increased from 
6.80% to 8.01% and 11.70%. 

Surprisingly, for the prediction of y-axis displacement, the ac-
celeration in the y-direction is not the most important. Instead, 𝑎𝑧 , 
𝜔𝑥 , and 𝜔𝑧 contribute more. These features determine the angle 
between the index finger phalanxes and their respective postures. 
This indicates that the y-axis displacement of the fingertip is mainly 
influenced by finger bending and changes in hand posture rather 
than the translational motion of the index finger. Even though re-
moving information from other axes did not significantly increase 
the errors in the x or y-directions, 𝜃𝑙 𝑒 𝑟 𝑟 𝑜 𝑟 still increased significantly. 
All 6-axis data is helpful for accurately predicting the velocity. 

7.5 Summary 
For RQ1, we find that the prediction accuracy of different mo-
tion modes is similar, thus rejecting the previous hypothesis. RW 
(Rested Wrist) is an input mode that balances free interactive motion 
and good accuracy. For RQ2, while the double-ring configuration 
(𝜃𝑙 𝑒 𝑟 𝑟 𝑜𝑟 =6.61◦) can achieve higher prediction accuracy, the single-
ring configuration still has considerable prediction performance 
(𝜃𝑙 𝑒 𝑟 𝑟 𝑜𝑟 =12.33◦). It potentially supports simple cursor control tasks 
in mobile scenarios. For RQ3, a pure RNN can learn the pattern 
of finger motion well, while physical knowledge connects the es-
timated finger attitude with velocity predictions and refines the 
prediction results. The combination of the two can achieve high-
precision and stable trajectory prediction. 

8 LAB ENVIRONMENT FITTS’ LAW STUDY 
We conducted two studies to evaluate the MouseRing device. The 
first study was a Fitts’ Law experiment conducted in a controlled 
laboratory environment, aiming at assessing the input efficiency of 
MouseRing under ideal conditions. The second study was conducted 
in a real-world large-screen interaction scenario, allowing us to 
evaluate the usability and robustness of MouseRing in practical 
settings. 

In the Fitts’ law study, we compared MouseRing with two base-
line input methods commonly used for cursor control in target 
selection tasks: laptop touchpads and air mouses commonly used 
for controlling presentation slides remotely. We recorded the mean 
selection time and plotted a graph to depict the time-difficulty rela-
tionship according to Fitts’ Law. We answer the following questions: 
RQ4: How does the input efficiency of MouseRing compare 
to the baseline? 

Figure 7: (a) The setup for Fitts’ Law study. (b) The GUI of 
Fitts’-like target selections. (c) Deli2803 flying mouse. 

8.1 Input Methods 
We compared three input methods. In addition to MouseRing, we 
chose two target selection methods based on the mouse selection 
paradigm as baselines. For MouseRing, we tested both double-ring 
and single-ring setups. 

• TouchPad: Participants use a laptop’s touchpad, the golden 
standard for controlling cursor movement for target selec-
tion. 

• AirMouse: Air Mouse, also known as a gyroscopic remote 
controller, enables anywhere-available cursor control. Par-
ticipants hold the air mouse in their hands and move it in 
the air. The gyroscope senses the movement and maps it to 
the cursor’s movement. 

• MouseRing (double-ring): Users wear two rings, sit in 
front of the screen, and use their index fingers to slide on 
the desktop to control the cursor. 

• MouseRing (single-ring): Participants wear a ring on the 
intermediate phalanx, sit in front of the screen, and use their 
index fingers to input. 

8.2 Apparatus 
We ran the Fitts Law study’s JavaScript program on a Dell G3 
laptop. The laptop’s touchpad was used as the TouchPad baseline. 
We used the Deli 2803 flying mouse as the AirMouse input device. 
For MouseRing, participants wore the same prototype device as in 
the data collection section. We removed the display-to-control ratio 
of the Windows system by reverse-engineering[7]. In this way, we 
eliminated the potential impact of the display-to-control ratio on 
different input methods. 

8.3 Participants 
We recruited 12 participants (6 females, aged 20 to 25, M = 24.0) from 
the campus. All participants were right-handed. All participants 
were very familiar with TouchPad input. Four participants had 
previous experience with Air Mouse. None had used MouseRing 
before. 

8.4 Design and Procedure 
The experiment was based on a Fitts’ Law target selection GUI 
(Fig.7(b)). Each time, two yellow buttons, S (Start) and E (End), 
appeared on the screen. The buttons were randomly generated 
with diameters ranging from 12mm to 30mm and distances ranging 
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Figure 8: (a) The mean selection time of different input meth-
ods. (b) The linear relationship between MeanTime and ID. 

from 90mm to 400mm. Participants first moved the cursor to the 
Start button. After 1 second, the Start button turned green. They 
then moved the cursor to the End button. After a 250 ms pause, 
the End button turned green, indicating the completion of a target 
selection. The time interval between the color changes of the two 
buttons was recorded as the selection time. 

Each participant had to complete the task under four different 
input methods or configurations. Participants had to complete 5 
rounds * 10 times/round = 50 selections for each input method. 
Before using each input method, participants could practice freely 
until they felt they had mastered the input method. Each participant 
performed the tasks in a different order to eliminate the effects of 
fatigue and learning. 

8.5 Results 
We used linear regression in the Fitts’ Law study to fit the rela-
tionship between the average selection time and index of difficulty 
(𝐼 𝐷 = 𝑙𝑜𝑔2 

2𝐷 
𝑊

). We ran one-way RM-ANOVA and Friedman tests 
for different input methods to test the significance of differences 
between the average time. 

The Friedman test revealed significant differences in the mean 
selection time between different input methods (𝜒 2 = 26.51, 𝑝 < 
0.001). The input efficiency of dual MouseRing (𝑀𝑇 = 658.1𝑚𝑠, 𝑆𝑇 𝐷 = 
45.1𝑚𝑠 ) was only slightly slower than TouchPad (𝑀𝑇 = 629.1𝑚𝑠 , 𝑆𝑇 𝐷 = 
41.5𝑚𝑠 ). In contrast, AirMouse and single MouseRing were signif-
icantly slower than TouchPad (𝐹 = 5.9, 12.2, 15.0, 𝑝 < 0.05). We 
found that the double-ring configuration of MouseRing was a fast, 
anywhere-available input method compared to AirMouse. 

Furthermore, we fitted the relationship between MeanTime and 
ID, where the slope of the line represents the cursor movement 
rate, and the intercept reflects the target-locking speed (Fig.8(b)). 
TouchPad (𝑘 = 83.47) had the fastest cursor movement speed, fol-
lowed closely by MouseRing (𝑘 = 94.07) and AirMouse (𝑘 = 93.54). 
The model’s accuracy decreased in the single-ring configuration 
and decreased cursor movement speed. AirMouse had the largest 
intercept because the participant’s suspended hand was prone to 
shaking, making target locking difficult. 

For RQ4, we found that the MouseRing with a double-ring con-
figuration can achieve comparable input speed (629 ms vs. 658 
ms) to the TouchPad and is faster than the anywhere-available 
baseline (AirMouse). With a more lightweight wearing experience, 

as a tradeoff, the MouseRing in the single-ring configuration ex-
hibits approximately 20% higher completion times compared to the 
touchpad. Participants reported that target selection becomes chal-
lenging when the targets are small. Therefore, in real-world tasks, 
it is necessary to investigate how much MouseRing can support 
fine-grained target selection tasks in the single-ring configuration. 

9 REAL-WORLD SCENARIO EVALUATION 
The Fitts’ Law study conducted in a lab setting demonstrated that 
MouseRing achieves input efficiency comparable to a touchpad in 
controlled environments. Our final study was conducted in a large-
screen real-world interaction scenario. We evaluated the usability 
and robustness of MouseRing technology in real-world applications 
across various physical surfaces and different body postures. We 
also investigated the limit of sensing precision under single-ring 
and dual-ring configurations. We addressed the following research 
questions: 

RQ5: How does MouseRing’s input efficiency vary with 
different softness, hardness, and flatness levels of input sur-
faces, as well as different user body postures during the in-
teraction? 

RQ6: To what extent can MouseRing support fine-grained 
target selection tasks in the single-ring and dual-ring config-
urations? 

RQ7: Does MouseRing provide better comfort for wear-
ing/carrying and achieve a workload better than the base-
lines? 

9.1 Setup 
MouseRing has the potential advantage of providing always-available 
interaction, so we asked participants to complete target selection 
tasks in both standing and sitting postures on different surfaces. 
We evaluated the usability of MouseRing in both dual-ring and 
single-ring configurations on four different surfaces. The desktop, 
sofa, wall, and thigh surfaces cover different plane orientations, 
hardness, and flatness levels. The desktop and wall are hard and 
flat surfaces, while the sofa and thigh are soft and uneven. Partic-
ipants interacted with the desktop and sofa (horizontal surfaces) 
while sitting and with the wall and thigh (vertical surfaces) while 
standing. 

We chose the mouse and AirMouse as baselines, with the mouse 
replacing the touchpad used in the lab-condition study, as it would 
be difficult for participants to constantly hold a touchpad while 
standing. Participants used the mouse on a desktop and wall sur-
face when sitting and standing, respectively. We conducted 12 
within-subject studies (2 Mouse + 2 AirMouse + 4 Dual-Ring + 
4 Single-Ring), with the input method, posture, input surface, and 
ring number as factors. 

9.2 Apparatus 
We used the Samsung UA65JU5900JXXZ as the large-screen device. 
The screen size is 65 inches, with participants inputting from a 
distance of 3-5m. The user experiment script and GUI were run on 
a laptop and projected onto the screen via an HDMI cable. We used 
the Logitech M186 as the mouse device and the Deli 2803 flying 
mouse as the AirMouse input device. 
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Figure 9: (a) The setup for the large-screen interaction user 
study. (b)-(e) The wireless version of the MouseRing proto-
type. We tested its performance on different surfaces: desk(b), 
sofa(c), wall(d), and thigh(e). 

We integrated the Bluetooth and IMU sensor modules into a 
small wireless ring to provide a more realistic wearing and usage 
experience closer to real-life scenarios (Figure 9). This ring has 
the same sensing modules as the previous prototype device and 
sends data to the computer via Bluetooth at 200 Hz. A more detailed 
design of the wireless ring is presented in Appendix B. 

9.3 Participants 
We recruited 12 participants from the campus (7 females, aged 
18 to 25, M=22.4). All participants were right-handed. All partici-
pants were very familiar with the mouse device. None had previous 
experience with either the AirMouse or MouseRing before. 

9.4 Design & Procedure 
We designed a user experiment for large-screen device interaction. 
Participants played the role of a museum guide and used the large-
screen device to introduce exhibits to visitors. Participants were 
required to sequentially move the mouse and select buttons on the 
large screen, controlling the detailed descriptions of the exhibits to 
pop up individually and then read them aloud. Afterward, the partic-
ipants clicked the page-turning button and continued introducing 
the following exhibit. Each page contained five buttons that could 
trigger events. The size and position of the buttons on the page 
were designed in advance to cover different sizes and distances. We 
provided the participants with a script to guide them on the order 
of clicking buttons and reading text. Screenshots of the interactive 
pages are presented in Figure 13 in Appendix C. 

Before the experiment began, participants had 5 minutes to learn 
and familiarize themselves with controlling the cursor using the 
AirMouse and MouseRing. Each participant needed to complete 
one round of the experiment under 12 sets of settings (2 Mouse + 
2 AirMouse + 4 Dual-MouseRing + 4 Single-MouseRing). Under 
each setting, participants completed 10 pages * 5 times/page = 50 
selections. We recorded the time taken for each target selection, 
as well as the distance to and size of the target. Each participant 
completed the tasks in a different order to eliminate the effects of 
fatigue and learning. After the experiment, participants filled out 
a subjective questionnaire and briefly talked about their feelings. 
The experiment lasted approximately two hours. 

Figure 10: (a) The mean selection time of different input 
methods, ring numbers, surfaces, and body postures. (b) The 
5-second recall of different methods when ID(index of diffi-
culty) increases. (c) The subjective ratings for different input 
methods. 

9.5 Results 
We ran one-way RM-ANOVA and Friedman tests for different input 
settings to test the significance of differences between the average 
time. The significance of subjective ratings was tested using the 
Mann-Whitney-Wilcoxon rank test. 

9.5.1 Input Method. Participants were able to utilize MouseRing 
effectively for target selection in real-world contexts. Although a 
mouse remains the fastest input method in a seated posture, the 
speed advantage over MouseRing is insignificant. On the other hand, 
in both dual-ring and single-ring configurations, MouseRing signif-
icantly outperformed the mouse device while standing across three 
planes (desk, sofa, wall) for dual-ring (𝑝 < .01, 𝐹1,22 = 9.9, 11.9, 12.7) 
and two planes (desk, sofa) for single-ring (𝑝 < .01, 𝐹1,22 = 5.5, 9.7). 
Moreover, MouseRing surpassed the AirMouse in terms of input 
efficiency on three out of four tested planes (desk, sofa, wall)(𝑝 < 
.01, 𝐹1,22 = 24.5, 26.1, 26.9). 

9.5.2 Body Posture. The participant’s posture significantly influ-
enced the effectiveness of two baseline input methods(𝑝 < .05, 𝐹1,22 = 
17.8, 6.1). Participants reported fatigue when using a mouse while 
standing or moving and encountered difficulty accurately manip-
ulating the AirMouse in a seated position with limited body mo-
bility. Contrastingly, no efficiency disparity was observed between 
MouseRing interactions on a desk (seated) and a wall (standing). 
These findings suggest that MouseRing is optimally suited for in-
teractions in mobile contexts due to its always-available nature. 

9.5.3 Interacting Surface. The desk, being a horizontal and rigid 
surface, mimics an interaction environment akin to a laboratory 
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setting. Input speeds on vertical hard planes (wall) or horizontal 
soft planes (sofa) were comparable to those on a desk. We concluded 
that MouseRing demonstrated robustness and rapid response in 
supporting inputs on surfaces with varying orientations and hard-
ness levels. However, interaction on the thigh was significantly 
slower than on the desk (𝑝 < .05, 𝐹1,22 = 5.7), attributable to the ir-
regularities caused by clothing wrinkles and the inherent curvature 
of leg muscles, which rendered the surface uneven during move-
ment, thereby affecting fingertip tracking accuracy and decelerating 
selection speed. 

9.5.4 Ring Number. The dual-ring configuration exhibits a slightly 
faster average time compared to the single-ring configuration, but 
the difference is not significant. To ascertain the precision limits 
of MouseRing in fine-grained target selection, we computed the 
proportion of successful button clicks within a five-second window 
(5-second-recall) across different difficulty levels (𝐼 𝐷 = 𝑙𝑜𝑔2 

𝐷 
𝑊

)). 
Following Fitts’ law, while increased difficulty leads to protracted 
selection time, selections exceeding 5 seconds suggest that the 
participant had to make secondary cursor adjustments during that 
selection. 

The 5-second recall for a mouse remained stable at over 98%. The 
dual-ring and single-ring configurations of MouseRing maintained 
accuracy rates of 97% and 100%, respectively, when the difficulty 
was less than 4 and 3.5, but these rates declined precipitously after 
that. For smooth selection, we recommend that the angle between 
the selection target and the cursor be less than 3.81◦ for dual-ring 
and 5.54◦ for single-ring (corresponding to ID=4, 3.5). 

9.5.5 Subjective Ratings. MouseRing exhibits superior comfort for 
prolonged use. The single-ring configuration was significantly more 
comfortable than the dual-ring configuration (𝑝 < .05, 𝑍 = −2.14). 
Both configurations outperformed the mouse and AirMouse in com-
fort (𝑝 < .05, 𝑍 = −2.63, −1.54, −3.21, −3.03), as participants did not 
need to grasp any object in their hand during the extended user 
experiments. The physical load associated with MouseRing interac-
tion was similar to that of a mouse and significantly lower than that 
of the AirMouse (𝑝 < .05, 𝑋 = −2.65, −2.13). The mental load of 
using MouseRing and AirMouse was higher than using a mouse, al-
though the difference was insignificant. AirMouse and MouseRing 
experienced tracking errors, resulting in minor discrepancies be-
tween the actual cursor movement and the participant’s anticipated 
movement. Lack of prior experience with these devices could also in-
crease mental load. Finally, MouseRing achieved a satisfaction level 
comparable to that of a mouse. Participants perceived MouseRing 
as a more natural and satisfactory input method(𝑝 < .05, 𝑍 = −1.99) 
than AirMouse. 

9.5.6 Subjective Feedback. The participants found that MouseR-
ing allowed them to input more comfortably. Participant 7 said, 
"My hand does not need to reach towards the middle of the desk, but 
can input at the edge." Several participants looked forward to using 
MouseRing to control devices that were further away and to control 
the cursor in more relaxed postures, such as lying down or sitting 
back in a chair. Additionally, some participants also mentioned that 
MouseRing could be applied in scenarios like stage performances 
and presentations that require discreet and subtle interactions. Par-
ticipants 2, 6, and 7 all felt that the physical surface interaction 

provided a more grounded feeling than AirMouse. They could stop 
sliding at any time by lifting their fingertips. In contrast, AirMouse 
required the hand to be suspended in the air for a long time, did not 
support hovering during cursor movement, and might cause sus-
tained fatigue. It’s also worth noting that participants’ experiences 
with MouseRing evolved over time. Participant 3 said, "I need more 
practice time to get faster."We analyzed the selection time for the 
first ten and last ten selections and found that the average speed 
of the participants increased by 4%, confirming the existence of a 
learning effect. 

10 APPLICATION 
We have identified three application scenarios for MouseRing and 
implemented a range of interactions to highlight its always avail-
ability. 

10.1 AR/VR Input 
In scenarios involving visual occlusion and mobile interactions, 
MouseRing facilitates user manipulation of graphical interfaces 
in AR/VR environments. Unlike hand-held controllers, MouseR-
ing is considerably smaller and can be worn daily. Additionally, 
MouseRing does not rely on HMDs to be equipped with cameras, 
offering a low-power sensing solution that can potentially reduce 
the weight and size of future HMDs. We have implemented two 
VR applications: a voice and video calling application (Fig 11(a)) 
and a video player (Fig 11(b)). These applications utilize touchpad 
interactions supported by MouseRing to enable convenient cursor 
control in VR for button selections. 

Figure 11: (a) MR video voice calling (b) VR video player. (c) 
Slider control on the thigh. (d) In-pocket subtle input for 
player volume adjustment. (e) Input through FaST Slider 
during yoga. 
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10.2 Large screen Displays 
In conference and smart home scenarios, MouseRing can serve 
as a substitute for remote controllers and air mice to control pro-
jectors, smart TVs, and large-screen displays efficiently. We have 
implemented a series of cursor interactions and shortcut commands 
based on continuous mouse control (Fig 11(c)). Speakers can utilize 
MouseRing to highlight key points in presentation slides and switch 
content, even while standing or walking away from the screen. 

10.3 Mobile and Sports Scenarios 
In mobile or sports scenarios, we designed FaST Sliders[42], en-
abling MouseRing to support sending shortcut commands by slid-
ing in different directions on any surface. During sports, users are 
constrained in body posture and input capabilities. In commuting 
scenarios, MouseRing facilitates subtle and rapid input. MouseRing 
imposes minimal physical effort demands and liberates users from 
needing additional devices. Based on MouseRing’s FaST Sliders 
interaction, we have implemented the control of a music player and 
remote control functionality for a fitness instructional video app 
on a tablet (Fig 11(d),(e)). 

11 DISCUSSION 

11.1 Stronger Sensing Capability with 
Physically-informed Models 

Utilizing IMU sensors for body tracking is challenging, not solely 
due to sensor noise leading to inaccurate pose estimation but also 
because sparse pose information is inadequate to recover the full 
spectrum of body movements. In our work, additional prior infor-
mation can benefit finger tracking by providing helpful information 
gain in hand kinetics for ML models. We contend that the inherent 
knowledge within the physical structure and movement patterns of 
the human body can be modeled as priors, assisting in achieving ro-
bust perception from weak sensor signals. Similar body constraint 
modeling has already been employed in full-body pose estimation 
studies. We hope our approach can inspire more work in HCI to 
develop novel motion and behavior recognition techniques. 

11.2 Towards Personalized Online Calibration 
Although there are many common physical laws governing the 
movement of index fingers, the differences in finger length ratios 
and movement styles among individuals are difficult to avoid. Set-
ting hyperparameters in the model to represent these individual 
differences and dynamically learning these parameters during user 
use can effectively improve the recognition accuracy of MouseRing. 
One possible approach is to fit the predicted fingertip trajectory 
of the model and the line between the initial cursor position and 
the user’s following selected target (ground truth of trajectory). 
Compared to a series of calibrations in advance, online personal-
ized calibration is iterated in the background without occupying 
additional user attention and achieves better results with the larger 
amount of online data. 

11.3 Sensing Ability 
Due to the interference of indoor magnetic fields, we utilized sig-
nals from a 6-axis IMU sensor and abandoned potentially helpful 
information from the magnetometer. This approach was feasible for 

our research, as each user experiment lasted only about 10 minutes. 
After that, the initial attitude of the IMU was recalibrated to elimi-
nate the impact of attitude angle drift. For long-term continuous 
use, the MouseRing algorithm also needs to be improved. Magne-
tometer information can complement accelerometer information in 
a clean outdoor space. For indoor circumstances, prior estimation 
of spatial magnetic fields could enhance the sensing capability of 
MouseRing. In the experiment, signals were collected at a frequency 
of 200 Hz. This frequency is sufficient for fingertip motion tracking 
tasks. However, a higher sampling frequency[35] may improve the 
accuracy of touch-down and touch-up event detection, as these 
events utilize the frequency domain characteristics of the signal. 
Nevertheless, there is a trade-off between the ring device’s sensing 
capability and power consumption. 

11.4 Long-term Wearing & Remounting 
Although a single-ring setup can support simple input interac-
tions, higher precision and accuracy of MouseRing sensing require 
wearing two rings. The long-term wearing of a single ring on the 
intermediate phalanx may cause slight discomfort. One possible 
solution is to wear the intermediate phalanx ring on the base of the 
other fingers for improved comfort during daily wear. The MouseR-
ing requires users to position the IMU sensor on the backside of the 
finger when wearing the ring. Still, we did not explicitly require 
precise angle alignment during data collection or user evaluations. 
Participants also did not report any noticeable impact on accuracy 
due to the remounting process, which assures position adjustments 
while using MouseRing. The wearing status can be recognized by 
calculating the relative posture between the rings. Various dual-ring 
wearing methods among different fingers can potentially provide 
independent and richer input methods. 

12 CONCLUSION 
We present MouseRing, a ring-shaped IMU device that accurately 
tracks fingertip movements and enables continuous cursor control. 
Through data analysis, we identified several physical constraints 
that govern the sliding process of the index finger. We have achieved 
high-precision fingertip tracking by combining physical prior with 
machine-learning methods, with a remarkable mean angular error 
of 6.61◦ . We believe that leveraging the inherent knowledge em-
bedded within the physical structure and movement patterns of the 
human body can enhance the perceptual capabilities of IMUsen-
sors. In a lab evaluation, the dual MouseRing demonstrated input 
efficiency comparable to a TouchPad. In real-life tasks, both the 
single and dual MouseRing devices exhibited robust and swift 2D 
cursor control on surfaces of varying hardness and flatness and in 
standing and sitting postures. MouseRing holds immense potential 
for various applications, including AR/VR, large display interaction, 
IoT, commuting, and sports scenarios. 
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A DATA ANALYSIS PROCESS OF KEY JOINT 
MOVEMENT LAWS 

We induce several motion laws of key joint movement in Section 5. 
Here, we provide a detailed account of the processes through which 
various conclusions were verified or falsified via data analysis. Falsi-
fying the conclusions is relatively easy. The linearity of Conclusion 
1 can be easily falsified through analysis of the data plots. We have 
falsified Conclusions 3 and 5 by demonstrating that the length error 
exceeds 20%. Due to measurement errors, we cannot rigorously 
establish the strict validity of the constraint relationship through 
hypothesis testing. Instead, we consider the conclusion valid if more 
than 95% of the user data points satisfy our assumption of minimal 
error. 

A.0.1 Conclusion 1. 𝜽𝑫𝑰 𝑷 ≠ 2 𝜽 (𝜃 is defined as the angle 3 𝑷 𝑰 𝑷 𝐷 𝐼 𝑃 
between the phalanxs connected by the DIP joints. 𝜃𝑃 𝐼 𝑃 is the angle 
between the phalanxs connected by the PIP joint.) 

While 2 𝜃 𝐷 𝐼 𝑃 = 3𝜃𝑃 𝐼 𝑃 is widely used in VR hand reconstruction, 
we found that it does not hold during finger sliding. We visualized 
the relationship between 𝜃 𝐷 𝐼 𝑃 and 𝜃𝑃 𝐼 𝑃 for five representative 
participants out of the total twelve participants in Fig.4(b). The data 
from these participants were categorized into three distinct classes, 
which provide representative coverage of the entire participant 
group. For most participants(P3, P6, P7, P9), 𝜃 𝐷 𝐼 𝑃 and 𝜃𝑃 𝐼 𝑃 show 
a linear relationship, but the force exerted by the surface on the 
distal phalanx makes 𝜃 𝐷 𝐼 𝑃 smaller than its relaxed state. For P3 
and P11, the ratio is 2 still around 3 . However, the ratios for P6 and 
P9 are reduced. In addition, for a few participants (e.g., P5, green 
points in the scatter plot), 𝜃 𝐷 𝐼 𝑃 increases and then decreases with 
𝜃 𝑃 𝐼 𝑃 , and the linear relationship does not hold. We explained that 
some participants applied greater force to the surface, causing the 
supporting effect of the ligament near the DIP to disappear(Fig.4(c)), 
resulting in an unnatural posture of the finger. 

A.0.2 Conclusion 2. The three phalanxs of the index finger 
are in the same plane. 

Despite the additional forces exerted on the bones and ligaments 
during lateral sliding, we found that the three phalanxes of the 
index finger remained in the same plane in three different finger 
sliding modes (RW, RTM, RP), shown in Fig.4(d). We represented 
the corresponding vectors of the three bones as L1: the vector from 
DIP to the nail tip, L2: the vector from PIP to DIP, and L3: the vector 
from MP to PIP. We calculated the angle between L3 and the plane 
formed by L1 and L2 for each sliding mode. Even in the presence 
of measurement errors, if the angle is sufficiently small, we can 
consider coplanarity to hold true. The average angle size is 1.9◦ for 
RW, 2.1◦ for RTM, and 2.1◦ for RP. The proportion of data points 
with angles ≤ 5◦ reached 99.7%(RW), 98.1%(RTM), and 98.4%(RP). 
The above analysis indicates that the coplanarity holds. 

A.0.3 Conclusion 3. Each person’s skeletal length is fixed, 
but the ratio of the phalanxs’ lengths varies significantly 
between individuals. 

We suspected that skin deformation when the index finger is bent 
would cause a change in the distance between adjacent OptiTrack 
markers placed on the skin’s surface. We measured the standard 
deviation of the distance change between adjacent joints of the 
same participant. The average STD was 1.4%. 95.6% of the data 
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points achieved an error of less than 3%. The result indicates that 
using reflective markers on the skin to measure finger bone length 
ensures stable data. 

Although medical literature[6] provides an average length ratio 
of 2.52:1.42:1 for the three phalanxs of the index finger, we found 
that the length ratios of the three bones of the participants varied 
greatly. Taking the length ratio between the intermediate phalanx 
and distal phalanx of twelve participants as an example, we ob-
tained a similar average length ratio (1.42:1). However, the standard 
deviation of the ratio reached 0.22, indicating a difference of over 
15% between each participant’s ratio and the average ratio. Apply-
ing bone length ratios as prior knowledge to a physical model may 
further amplify joint velocity prediction errors in the propagation 
of the kinetic chain. 

A.0.4 Conclusion 4. The displacement of the fingertip pro-
jection on the physical surface is approximately equal to the 
displacement of the contact point. 

The nail tip is well located at the end of the kinetic chain, which, 
together with DIP, consists of the two distal phalanx endpoints. On 
the other hand, the contact point is located on the soft part of the 
fingertip, making it difficult to connect with the kinetic chain. We 
studied the average length and angle errors between the fingertip 
projection and the contact point. The average length error was 
0.98mm (4.69% of the total length) for each stroke. 96.1% of the data 
points had an error of less than 2mm. It is reasonable to the error in 
the subsequent physical modeling and to use the displacement of 
the fingertip projection to represent the movement of the contact 
point on the physical surface (Fig.4(f)). 

A.0.5 Conclusion 5. Among all three sliding modes (RW, 
RTM, RP), the displacement of MP cannot be ignored. 

One of the motivations behind proposing three different finger 
motion modes was the belief that constraints from the palm and 
other fingers could reduce the degrees of freedom in the sliding 
finger process. Placing the palm, thumb, or middle finger on a 
surface can strongly restrict the movement of MP of the index 
finger. However, in the RP mode, the average displacement of MP 
in one stroke still reached 2.9mm (18% of fingertip displacement). 
The average displacement was 16.2mm (40%) for the RW mode and 
12.2mm (28%) for the RTM mode. More substantial constraints can 
effectively reduce the displacement of MP but cannot eliminate its 
impact on the kinetic chain (Fig.4(g)-(i)). 

A.0.6 Conclusion 6. There is a strong correlation between 
the projected velocities of the fingertip, DIP, and PIP on the 
physical surface: 

arccos 
  

vNailTip∥ · vDIP∥  vNailTip∥   vDIP∥    

≤ 13◦ , arccos 

 
vDIP∥ · vPIP∥ vDIP∥   vPIP∥  

 
≤ 15◦ , 

arccos 
  

vNailTip∥ · vPIP∥  vNailTip∥   vPIP∥    

≤ 30◦ 

Table 3: Mean angles and 95% confidence interval of the an-
gles’ distribution between the projected velocities of the nail 
tip, DIP, PIP, and MP. 

Mean Angle / 95% Interval 𝑣𝑛𝑎𝑖𝑙 𝑡 𝑖𝑝 𝑣𝐷 𝐼 𝑃 𝑣𝑃 𝐼 𝑃 𝑣𝑀 𝑃 
𝑣𝑛𝑎𝑖𝑙 𝑡 𝑖𝑝 0◦/0◦ - - -
𝑣𝐷 𝐼 𝑃 6.2◦/12.6◦ 0◦/0◦ - -
𝑣𝑃 𝐼 𝑃 10.6◦/30.1◦ 7.8◦/15.8◦ 0/0 -
𝑣𝑀 𝑃 13.2◦/40.7◦ 12.9◦/34.8◦ 10.4◦/32.1◦ 0◦/0◦ 

When sliding the index finger leftwards or rightwards, the finger 
exhibits an approximately fan-shaped trajectory (Fig.4(j)). We hy-
pothesize that the velocity between the key points should have a 
strong correlation. We calculated the angles between the projected 
velocity vectors of the fingertip, DIP, PIP, and MP under three differ-
ent finger sliding modes. We then fit the velocity angles to a normal 
distribution and calculated the range of the 95% confidence interval 
(Table 3). The mean angle between the projected velocity of the MP 
and other key points exceeded 10 degrees, which indicates that the 
velocity relationship between the MP and other points is relatively 
weak. The fingertip and DIP, DIP, and PIP are the endpoints of two 
finger bones, respectively, so they have a strong velocity correla-
tion. We summarize the range of the 95% confidence interval as the 
velocity constraints between the projected velocities. 

B A DETAILED INTRODUCTION OF THE 
WIRELESS MOUSERING PROTOTYPE 

Figure 12: The Flexible PCB in the wireless version of 
MouseRing. 

The wireless version of MouseRing is designed and manufactured 
on a flexible, elongated PCB, as is shown in Fig.12. The elongated 
PCB is then curved into a circular shape and secured within a metal 
ring for user wearability. The PCB board incorporates several sen-
sors and communication components. We used the MPU9250 chip, 
identical to the one utilized in the data collection section, to carry 
out real-time collection of IMU motion data from the index finger. 
The Bluetooth module and antenna on the PCB can communicate 
with a remote computer to transmit the IMU data at 200 Hz. We 
have also integrated a touch-capacitive sensor and an LED light. 
They are used for device debugging and status feedback only and 
are unrelated to the design of the MouseRing. 
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Figure 13: Interactive pages of exhibits. 

C DETAILED SETUP OF LARGE-SCREEN USER 
EXPERIMENT 

Figure 13 shows the interactive pages of exhibits in the real-world 
user study. All text and image content is sourced from the official 

website of the Metropolitan Museum of Art[46]. Circular semi-
translucent components are interactable buttons. The sizes and 
positions were designed in advance to cover different indexes of 
difficulty. 
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