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Figure 1: Conceptual diagram of the conducted study. It displays the three main methodologies used in this research. From left
to right: pupil diameter, electrodermal activity (EDA), and the NASA-TLX questionnaire are shown as measures of cognitive
load. Lateral deviation and throttle control variability are presented to assess driving performance, and the ISO 9241-9 "ring of
circles" task used for Fitts’ law analysis is included to quantify interaction with the touchscreen.
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Abstract

This study investigates the interplay between a driver’s cognitive
load, touchscreen interactions, and driving performance. Using an
N-back task to induce four levels of cognitive load, we measured
physiological responses (pupil diameter, electrodermal activity),
subjective workload (NASA-TLX), touchscreen performance (Fitts’
law), and driving metrics (lateral deviation, throttle control). Our
results reveal significant mutual performance degradation, with
touchscreen pointing throughput decreasing by over 58.1% during
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driving conditions and lateral driving deviation increasing by
41.9% when touchscreen interactions were introduced. Under high
cognitive load, participants demonstrated a 20.2% increase in
pointing movement time, 16.6% decreased pointing throughput,
and 26.3% reduced off-road glance durations. We identified a
prevalent "hand-before-eye" phenomenon where ballistic hand
movements frequently preceded visual attention shifts. These
findings quantify the impact of cognitive load on multitasking
performance and demonstrate how drivers adapt their visual
attention and motor-visual coordination when cognitive resources
are constrained.
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1 Introduction

Touchscreens have become increasingly prevalent in vehicles,
providing access to various functions and information [4]. Despite
their functionality, operating a touchscreen while driving
introduces distractions that may negatively impact driver safety
[57]. The National Highway Traffic Safety Administration
(NHTSA) warns that visual distraction away from the road should
be limited, recommending glances not exceed 2.0 seconds [74].
When secondary tasks like touchscreen interactions exceed driver
processing capacity, information overload may occur [18, 107],
impairing both driving safety and touchscreen efficiency. The
result can be a frustrating user experience in the best case and a
disastrous driving accident in the worst case.

Therefore, researchers have quantified factors affecting
in-vehicle  touchscreen interaction.  Previous  studies
[3, 46, 55, 62, 109] have investigated how display size, location,
and interface component design affect driving performance,
focusing on isolated touchscreen tasks. However, there is growing
recognition of the need to understand the specific mechanisms
through which touchscreens and driving influence each other,
necessitating an expansion of the research scope to include
multitasking scenarios [28, 48, 75, 81]. In response, recent studies
have explicitly examined user behaviors in multitasking contexts
such as dialing or texting [9, 48, 58]. Although these studies
explore some specific aspects of multitasking, there is a broader
need to address a wider variety of secondary tasks.

To this end, we studied cognitive load and touchscreen
performance to quantitatively assess various multitasking
scenarios. Cognitive load quantifies the total mental resources
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engaged by a person across concurrent tasks and, in the context of
driving, indicates a driver’s information processing state and
capabilities [7, 21, 113]. Our study aims to broaden the discussion
on how multitasking-induced cognitive load influences driver
behavior during touchscreen interactions by: (1) quantifying
cognitive load, (2) quantifying driver touchscreen interaction
performance, and (3) quantifying driving performance.

First, we manipulate different levels of cognitive load using
an N-back task [78], a widely adopted paradigm for controlling
working memory demands [31, 56, 92, 103, 104]. To measure
the cognitive load, we collected physiological data from pupil
diameter [44] and electrodermal activity (EDA) [88] and assessed
participants’ perceived mental workload using the NASA-TLX
questionnaire [40, 41]. Second, to quantify drivers’ touchscreen
interaction performance, we used Fitts’ law [30, 64] to model
drivers’ pointing performance, and used eye-tracking sensors to
measure drivers’ visual attention distribution between the road
and the touchscreen. We specifically employed the ISO 9241-9
“ring of circles” task in which participants select targets arranged
in a circular pattern [20, 47, 66, 91]. Third, we evaluated driving
performance through two key metrics: steering and pedal control.
Steering performance was assessed by lateral deviation from the
road centerline, which measures how well the driver maintains
lane position. Pedal performance was assessed through throttle
control variability, which measures the consistency of gas pedal
manipulation.

Our results show that touchscreen pointing throughput
decreased by 58.1% during driving conditions (Section 4.3.1), and
lateral driving deviation increased by 41.9% after introducing
touchscreen interactions (Section 4.2.1). These results confirm that
with limited information processing capacity, dual-task interplay
degrades performance in both tasks.

Furthermore, high cognitive load significantly impacted drivers’
touchscreen interaction. Drivers exhibited a 20.2% increase
in pointing movement time and a 16.6% decrease in pointing
throughput, from 2.42 bits/s to 2.01 bits/s (Section 4.3.2). Drivers’
off-road glance duration decreased by 26.3%, from 1207 ms to 889
ms per gaze transition (Section 4.4), and induced a prevalent
"hand-before-eye" phenomenon, where ballistic hand movements
preceded visual attention shifts, intensifying to 71.9% under
high cognitive load. These results emerged from an overloaded
visual-motor system attempting to compensate for insufficient
processing resources during complex multitasking conditions.

This paper provides the following research contributions:

e Quantitative empirical results showing mutual performance
degradation between driving and touchscreen interactions.

e Quantitative empirical results showing how varying
cognitive loads affect drivers’ touchscreen pointing
performance and visual attention.

e Mixed-methods results about how drivers adapt their visual
attention to balance touchscreen interaction efficiency and
driving safety under different cognitive loads.

Our findings highlight the potential of the hand-before-eye
coordination pattern as a real-time cue for detecting elevated
cognitive load during driving. We also propose design guidelines
for interface strategies such as flattening interaction workflows to
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reduce multi-step tasks, adaptively accelerating target acquisition,
and deploying load-sensitive alerts to interrupt prolonged off-road
glances. Together, these implications support the design of future
touchscreen interfaces that better balance usability and safety in
high cognitive load contexts.

2 Related Work

Prior work related to this research primarily falls into three
categories: (1) cognitive load when driving, (2) touchscreens in
vehicles, and (3) Fitts’ law in human-computer interaction. We take
each of these in turn below.

2.1 Cognitive Load in Driving Contexts

Cognitive load has been a consistent topic for driving research [11],
particularly within efforts to detect and reduce safety risks posed
by distracted driving. Studies of driving in both real-world and
simulated driving environments find that high cognitive load
reduces people’s attention to important cues in their surrounding

environment and increases unsafe behaviors [5, 12, 23, 36, 39, 84].

For example, an on-road study by Harbluk et al. found that drivers
performing a mental arithmetic task focus their gaze primarily
on the center of the road. This shift in gaze led drivers to ignore
peripheral cues indicated in their mirrors or at intersections and

increased the frequency of dangerous hard braking events [39].

Moreover, a meta-analysis conducted by Caird et al. found that
conversations while driving (i.e., on a cell phone or with a
passenger) lower vigilance to external events, slow driver reaction
times, and increase the chance of collisions [12].

In response to driving safety risks posed by cognitive load,
regulators have proposed legislation mandating in-vehicle systems

that detect and mitigate the effects of cognitive distractions [13].

However, distractions from cognitive load are challenging to
detect because they represent an internal state rather than an
overt external behavior (e.g., eyes off the road [33], hands off the
wheel [73]) [37, 94]. As such, driving research has focused on
identifying in-cabin methods to reliably measure and detect an
individual’s level of cognitive load.

There are three main methods used to measure cognitive
load during driving [11, 60]: self-report, task performance,
and physiological measures. Self-report methods, such as the
Subjective Workload Assessment Technique (SWAT) [83],
Workload Profile [99], Instantaneous Self-Assessment [96],
and the NASA Task Load Index (NASA-TLX) [41, 79], provide
post hoc assessments of subjective load but lack real-time
sensitivity. Task performance measures examine changes in
driving behavior (e.g., particularly situational awareness and
reaction times to external events [5, 80]) and secondary-task
performance (e.g., slower response times and reduced accuracy
on peripheral detection or detection response tasks [8, 72]),
reflecting impairments in cognitive control [24]. Physiological
measures track sympathetic arousal (e.g., pupil diameter [31, 98],
electrodermal activity [69, 70], heart rate [70]), eye-movement
alterations [35, 36], and EEG spectral changes [16, 86]. Recent
studies have combined these signals using machine learning to
detect periods of elevated cognitive load (e.g., convolutional neural
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networks on eye-tracking videos [31], multimodal classifiers
achieving up to 97% accuracy [42]).

Taken together, this previous work shows that cognitive load
reduces a driver’s attentional resources, limiting the bandwidth they
have to act, such as performing unexpected evasive maneuvers
or interacting with their car’s touchscreen. It also highlights
that measuring cognitive load requires a combined approach that
includes subjective reports, behavior (particularly on secondary
tasks), and physiology.

2.2 In-Vehicle Touchscreen Interfaces

Previous studies have investigated various factors influencing
driver interaction performance with in-vehicle touchscreens. First,
research has addressed the physical characteristics of touchscreens,
such as their size and placement. Lamble et al. [55] reported that
increased eccentricity of touchscreen locations from a driver’s
direct line of sight can lead to reductions in predicted collision time
during tasks requiring sustained visual attention. Complementing
this finding, Wittmann et al. [109] highlighted that the distraction
caused by touchscreen interactions increases exponentially as the
distance from the driver’s primary visual field to the touchscreen
interaction point grows. Furthermore, research by Ma et al. [62]
provided evidence that, although larger screens (e.g., 10-inch or
17-inch displays) enhance the availability of information, they
simultaneously exacerbate visual distractions compared to smaller
screens (e.g., 7-inch or 9-inch).

Second, research has focused on the specific design attributes of
touchscreen interfaces, including the arrangement and visual design
of display elements. Studies by Nothdurft et al. [76] demonstrated
that arranging interface elements closely together improves visual
search efficiency; however, overly dense arrangements may impair
the recognition of individual targets [102]. Additionally, Yoon et
al. [111] found that visual features in vehicle instrument clusters
(e.g., icon dimensions, density, and color variability) significantly
affect the perceived visual complexity and consequently impact the
efficiency of visual searches.

Although these studies provide valuable insights into the
influence of touchscreen location, size, and visual design on driver
performance, the majority of this research has predominantly
concentrated on single-task scenarios [28]. Such scenarios
effectively isolate driver interactions but fail to capture the
multitasking complexity inherent in realistic driving situations.
Addressing this gap, subsequent studies have begun to extend
their scope to incorporate multitasking involving touchscreen
interactions. Janssen et al. [48], for instance, explored drivers’
cognitive chunk boundaries during dialing tasks, while Lee et al.
[58] examined drivers’ gaze patterns and task-switching behaviors
during reading tasks performed while driving. These studies
expanded the understanding of driver behavior in multitasking
contexts, yet their findings remained confined to specific activities
such as dialing or text reading, limiting their generalizability to
realistic driving contexts.

2.3 Fitts’ Law in Human-Computer Interaction

Fitts’ law, originally proposed by Paul Fitts in 1954 [30], models the
time (MT) it takes to perform rapid aimed movements to targets of a
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given width (W) at a given distance, i.e., amplitude (A). Rapid aimed
movements are those that can be guided by the actor and should be
contrasted with ballistic movements, which are fully determined
by their launch conditions. Widely adopted in human-computer
interaction (HCI) [64], the "Shannon formulation" of Fitts’ law [63]
is expressed as:

MT:a+b-10g2(%+l) (1)

In Eq. 1, a and b are empirically derived regression coefficients,
and the logarithmic term defines the nominal index of difficulty (ID)
of the pointing task, measured in bits, with higher ID indicating a
more challenging task. Although A, W, and ID specify the nominal
task, actual performance often deviates: users may undershoot
or overshoot the amplitude A, and may over- or under-use the
target width W, possibly incurring errors. To account for these
discrepancies, Crossman [14] proposed effective amplitude (A,)
and effective width (W), subsequently validated in prior work
[64, 65, 91, 105]. In each A X W condition, A, is the mean of actual
movement distances, and W, is computed based on the standard
deviation of endpoints o around target centers, and amounts to
oV2me, a constant related to the entropy of a standard normal
distribution [110]. This correction ensures W, reflects true pointing
precision rather than nominal target width. By computing ID,
researchers integrate users’ speed—accuracy biases into a unified
throughput metric [65, 91, 112]:

D, = log, (% + 1) @)
e

To minimize directional biases and enhance reliability, the ISO
9241-9 standard recommends the "ring of circles” paradigm, which
arranges targets evenly spaced along the circumference of a circle
[20, 47, 66, 67, 91]. Participants begin from the top target and
sequentially move across the diameter of the circle, tapping each
target around the ring in a clockwise fashion. This design mitigates
systematic directional biases that could influence movement time,
as it requires movements in multiple directions.

3 Experiment Method

This section describes the methodology of the experiments,
including participants (Section 3.1), apparatus and sensors (Section
3.2), experimental design and data processing (Section 3.3 — 3.4),
procedure (Section 3.5), and statistical methods (Section 3.6).

3.1 Participants

Sixteen participants (10 female, 6 male) with a mean age of 25.8
years (SD = 4.1) and an average driving experience of 5.7 years
(SD = 3.0) were recruited. Driving frequency was distributed as:
daily (4), two or three times weekly (3), once a week (3), monthly
(3), and less than monthly (3). All participants possessed valid
driver’s licenses. Participants with myopia were instructed to wear
contact lenses. All participants could terminate the experiment at
any time and received a $40 gift card as compensation. The study
was approved by our university’s Institutional Review Board.
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3.2 Apparatus

We developed a driving simulation integrated with eye-tracking,
electrodermal activity (EDA) sensors, and vision-based finger
tracking sensors, along with an auditory N-back task and a
touchscreen-based Fitts’ law task (Figure 2).

3.2.1 Simulation Environment. The driving simulation was
developed using the open-source driving simulator CARLA [19].
For this study, we utilized CARLA’s Town10 map, which features
an urban setting, as illustrated in Figure 2. Participants followed
a predefined continuous route along the outer perimeter road.
Participants used the Fanatec Podium Wheel Base DD2 steering
system and the Fanatec Clubsport Pedals V3, mounted on a Trak
Racer TR80 simulator frame, as shown in Figure 2. A 38-inch
widescreen monitor was also attached to the TR80 frame, with the
seat position, steering wheel height, and pedal distance adjustable
to accommodate individual participant preferences.

3.2.2  Sensor Setup. To measure drivers’ physiological states and
touchscreen interactions, we integrated three sensors. Eye-gaze
data were captured using the Tobii Pro Glasses 2, which tracks eye
movements to determine a driver’s visual attention. It records gaze
data at 100 Hz and captures 1920x1080 video at 25 fps from the
user’s viewpoint.

Cognitive load was quantitatively assessed using pupil diameter
and EDA [10, 89, 100]. Pupil diameter was measured using the Tobii
Pro Glasses 2, while EDA data were recorded at 15 Hz using the
EmotiBit sensor [71], an open-source wearable device secured to
participants’ wrists for physiological data collection.

To capture finger movement distance and timing for the Fitts’
law analysis, we used a ZED 2i stereo camera combined with
Google’s MediaPipe hand-tracking algorithm. The ZED 2i offers
a 110°x70°x120° field of view, records binocular images at 2560x720
resolution and 60 fps, and provides 16-bit depth data processed via
the ZED SDK and MediaPipe to track index finger trajectories in
3-D space.

3.2.3 N-back Task. The N-back task for this study required
auditory responses from participants. A hi-fi speaker was integrated
into the simulation setup to deliver audible stimuli to participants
in the form of sequential random numbers, which were generated
and converted into auditory form using Google Text-to-Speech, with
each number presented at intervals of 2.5 seconds. Participants
verbally responded with the number presented N numbers behind
the current number, and their responses were manually recorded
by the experimenter.

3.2.4 Fitts’ Law Task. We implemented the "ring of circles" ISO
9241-9 task [20, 47, 91]. A Samsung Galaxy Tab S7 FE 12.4"
was positioned to the participant’s right to enable comfortable
touchscreen interaction, as illustrated in Figure 2. This tablet
features a 12.4-inch display with a 16:10 aspect ratio and a resolution
of 2560x1600 pixels. Active targets for selection appeared in Dodger
blue, while inactive targets were displayed in gray. Incorrect
selections caused the target to briefly flash red (for 100 ms),
accompanied by an error tone, providing immediate feedback to
the participant regarding misses.
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Figure 2: Driving simulator and sensor system implemented for the experiment. Participants drove along a predefined route
in an urban environment, shown on the left side of the figure. Simultaneously, they were instructed to perform the ring
of circles task using a touchscreen located to the right of the steering wheel. During this process, a sensor for measuring
electrodermal activity was attached to the participant’s wrist, a depth camera for tracking hand movements was installed above,
and eyeglass-mounted sensors were worn to track gaze and measure pupil diameter.

Baseline Non-Driving Target Selection Task. To establish a
baseline for target selection performance without driving, we
conducted a small Fitts’ law experiment with eight participants.
Participants performed the same Fitts’ law task using identical
experimental apparatus but without simultaneous driving or N-
back tasks. The baseline experiment yielded an average throughput
of 5.78 bits/s (SD = 0.61), which is in keeping with prior work on
touchscreen target selection [6, 49, 87]. This result provided us with
a baseline to quantify the impact of driving and cognitive load on
touchscreen interaction.

3.25 Questionnaire. Participants completed three questionnaires
after each cognitive load condition:
e NASA-TLX [40, 41]: Measures subjective workload under
each condition.
e Short Stress State Questionnaire (SSSQ) [43]: Measures
participants’ perceived stress levels.
¢ International Positive and Negative Affect Schedule
Short Form (I-PANAS-SF) [50]: Assesses emotional states
and affective responses.

3.3 Experiment Design

Our study aimed to observe and analyze the behaviors of drivers
interacting with touchscreens under varying cognitive load
conditions. We systematically induced four distinct cognitive load
conditions:

e No N-back Task: Participants performed driving and
touchscreen target selections without the N-back task.

e 0-Back: Participants repeated the number they just heard
while driving and performing touchscreen target selections.

o 1-Back: Participants responded with the number presented
one number earlier while driving and performing
touchscreen target selections.

e 2-Back: Participants responded with the number presented
two numbers earlier while driving and performing
touchscreen target selections.

Each participant experienced all cognitive load conditions once,
with the sequence randomized using a balanced Latin square.

Under each cognitive load condition, participants completed the
Fitts’ law task using the "ring of circles" setup. Two movement
amplitudes were used: Ay = 70 mm and Ay = 120 mm. Each
amplitude was combined with three target widths: Wi = 6.9 mm,
W = 8.6 mm, and W3 = 10.3 mm. This design resulted in six distinct
AXW combinations, representing nominal indices of difficulty (IDs)
ranging from 2.96 bits to 4.20 bits. As shown in Figure 2, 19 targets
were arranged for each A X W set, with the first three targets used
as practice for participant warm-up, and the remaining 16 targets
used for data collection. Excluding practice trials, the total number
of trials was (16 participants) x (4 cognitive load conditions) x (6 A
X W sets) x (16 targets) = 6,144.

3.4 Data Collection and Analysis

This section presents the data collected under each experimental
condition (Section 3.3) and the corresponding processing methods.

3.4.1 Physiological Signals. We utilized pupil diameter and EDA
to verify changes in participants’ cognitive load. A preliminary
user study supporting this approach’s feasibility is included in the
Appendix. Standard processing pipelines [52] were employed to
process pupil diameter data. Blinks were removed and linearly
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Figure 3: Gaze focus transitions and finger ballistic movement phases during pointing operations. The visual focus of attention
is determined by the vertical relative position between the gaze point and the reference marker. The ballistic movement phase
begins with the most dominant velocity impulse of the fingertip and concludes when the target is selected on the touchscreen.
The dotted lines indicate that ballistic movements begin before the visual focus transitions to the screen, even before the

transition phase. We discuss this finding in our Discussion.

interpolated. The pupil data was low-pass filtered at 10 Hz and
Z-scored within each participant. To assess cognitive load-induced
changes, we subtracted a baseline period (two seconds before the
start of each block) from pupil diameter measurements.

3.4.2 Driving Performance. We quantified driving performance
using two metrics: lateral deviation from the road centerline and
throttle control variability. Lateral deviation measures how well
the driver maintains lane position. The throttle control variability
evaluates how consistently the user manipulates the pedal. Both
throttle and brake inputs were normalized to the [0, 1] range, with
0 indicating no pressure and 1 indicating full depression.

Lateral deviation was calculated as the frame-by-frame distance
between the vehicle center and the road centerline. Curved
segments were excluded to eliminate the confounding effects of
their inherent cognitive demands, as noted by previous research
[77]. For each condition, mean deviation was computed and
normalized by subtracting the participant’s baseline, recorded after
the practice session without any secondary task. Throttle control
variability was evaluated using the standard deviation of throttle
input, also excluding curved segments. These values were similarly
normalized using each participant’s baseline driving data.

3.4.3 Fitts’ Law Task Metrics. We employed hand tracking to
calculate the actual moving distance for each pointing action
and averaged these measurements to determine the effective
amplitude. Unlike traditional Fitts’ law tasks [64] where participants
perform a series of continuous pointing actions during a block, our
experimental design required participants to alternate between
steering wheel control and pointing tasks. Consequently, while
the origin of pointer movement during continuous target selection
would typically be the previous target circle on the "ring of circles, a
substantial proportion of trials—those originating from the steering

wheel to the touchscreen—had effective amplitudes (A.) much
greater than others—those originating from the touchscreen itself.

Research on feedback control of hand movements [15] reveals
that an aimed pointing movement consists of a series of discrete
corrective motions decreasing in magnitude, called “submovements.”
By identifying the starting point of the initial ballistic phase of
the movement, we determined the actual starting position and
movement time for each pointing trial, enabling us to calculate A,
even for trials originating from the steering wheel. Thus, from a
given A X W ring-of-circles condition, two (ID,, MT) ordered pairs
could be generated, one for trials originating from the touchscreen,
and another for trials originating from the steering wheel.

First, we calculated the movement distance for each pointing trial.
Using RGB images captured by a ZED 2i camera processed through
Mediapipe [61], we obtained the 2-D position (x34,ysq) of the
finger in each frame. Combined with camera intrinsic parameters
(fx fy, Cx» cy) and synchronized depth data from ZED 2i camera, we
derived the real-time 3D position of the index finger according to:

(%20 —cx)Z

X = 24 X%
% @

(y2a - cy)Z
Y="—-—"— 4
7 (4)
Z = D(x34, Y2q) (5)

where D(x,4,y54) represents the depth value at the 2-D finger
coordinates.

As shown in Figure 3, by calculating the 3-D motion velocity of
the fingertip, we employed the find_peaks function from Python’s
SciPy library [101] to detect the starting point of the dominant
impulse in the ballistic phase preceding each touch action. This
point was established as the origin of finger movement for each
trial. The distance from this origin to the target circle on the
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touchscreen represented the actual movement distance for each
pointing action, providing a more accurate measurement than
screen-based calculations alone. A similar approach to isolating
aimed pointing movements from continuous motion was used in
the Input Observer by Evans and Wobbrock [26].

Next, we applied a Gaussian Mixture Model [85] for binary
classification of all pointing trials per participant at each amplitude
level. This yielded clear movement distance classification thresholds
to differentiate the origin of each pointing action as either from
the touchscreen or from the steering wheel. For each A x W
ring-of-circles condition, if five or more trials of one origin type
were produced, we used all trials of that type to calculate A, W,
ID,, and MT. A, averaged the movement distance, while W, was
calculated as V2ze X SDx,y, where SDxly is the bivariate standard
deviation of touch positions in the x and y directions on the
touchscreen [110]. Blocks with fewer than five trials for a particular
origin type were discarded as outliers. For each participant under
each cognitive load, this ultimately provided 6-12 data points (1-2
for each A X W ring-of-circles condition) to fit a Fitts’ law model.

3.4.4 Gaze and Focus of Attention. Gaze and eye movement serve
the purpose of identifying an individual’s focus of attention (FoA)
[93]. In our study, FoA referred to the area where the gaze
was concentrated while participants simultaneously drove and
interacted with a touchscreen.

We defined “visual distraction” in relation to the primary task of
driving, measured as any period when the driver’s gaze was directed
away from the road. Although both driving and touchscreen
interactions were given as experimental tasks, we considered the
gaze directed at the touchscreen as a “visual distraction” from a
driving safety perspective. We classified drivers’ gaze point (FoA)
into three categories:

e On-road gaze: The FoA was on the road.

e On-screen gaze: The FoA was on the touchscreen.

o Gaze transition: The FoA was shifting between driving and
touchscreen pointing tasks.

We positioned an ArUco marker [34] at the bottom edge of the
driving simulator monitor, with the touchscreen located at the
lower right of the monitor. As shown in Figure 3, we compared the
relative position of the participant’s gaze point to the ArUco marker
in real-time using the first-person camera data from Tobii Pro Glasses
2 to determine whether the user’s FoA was on-road (gaze point
higher than the ArUco marker) or on-screen (gaze point lower than
the ArUco marker). Additionally, we calculated gaze point velocity
and identified rapid eye movements exceeding three standard
deviations during FoA transitions as the gaze transition period.
We defined each “visual distraction duration” as the amount of
time participants’ gaze points left the road on the driving simulator
monitor, which included a period of on-screen gaze and two rapid
gaze transition periods.

3.5 Procedure

Prior to the experiment, participants received detailed explanations
of the experimental procedures and data collection practices and
provided informed consent. They were then equipped with an
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EmotiBit sensor and Tobii Pro Glasses 2. Participants adjusted the
seat, steering wheel, and pedals to their preferred positions.

Participants were instructed to prioritize driving safely in all
tasks by maintaining a stable speed, staying within their lane, and
avoiding abrupt accelerations or decelerations. Performance on the
N-back and pointing tasks began simultaneously with the driving
simulation. Participants were encouraged to respond accurately to
the N-back task and to perform touchscreen interactions for the
target selection task “quickly and accurately” After completing a
single ring-of-circles for one nominal ID, participants were given
a 30-second rest before proceeding to the next set. During each
rest period, participants continued driving without performing the
N-back or touchscreen tasks, and the touchscreen interface was
deactivated (see Figure 2).

Before the study began, participants completed three practice
blocks, each lasting a minimum of five minutes, to familiarize
themselves with the experimental setup and tasks. These included:
(1) practice with the N-back task, (2) driving practice along
the experimental route (Figure 2), and (3) practice driving with
the touchscreen target selection task. Participants could request
additional practice if needed, and five of them did so. After
the practice sessions, baseline driving behavior was recorded by
having participants drive the specified route without additional
tasks. Participants then sequentially experienced each cognitive
load condition while using the touchscreen, completing the three
questionnaires after each. Sufficient rest periods were ensured
between conditions to mitigate fatigue.

3.6 Statistical Analysis

Our statistical analysis consists of two primary components.
We first examined whether driving and touchscreen interaction
mutually influence each other. We then assessed how cognitive
load levels impact driver performance across multiple measures.

3.6.1 Driving With vs. Without Touchscreen Interaction. We
investigated the effect of touchscreen interaction on driving
performance without the N-back task. Using driving without
touchscreen interaction and driving with touchscreen interaction
as independent variables, we examined their impact on driving
performance metrics. These include driving deviation and throttle
control variability. A within-subjects design with two conditions
was employed for this analysis.

3.6.2 Touchscreen Interaction With vs. Without Driving. We
compared touchscreen pointing performances when driving versus
when not driving, both without the N-back task. This analysis
examined the effects of driving on pointing movement time, error
rate, and throughput. A between-subjects design with two
conditions was employed.

3.6.3 Cognitive Load Impact. To assess the impact of cognitive
load on drivers’ performance across multiple tasks, we employed a
within-subjects design with repeated measures across four cognitive
load conditions. In this experiment, participants completed 6,144
trials in total, excluding practice trials.

The independent variable was cognitive load level, manipulated
through four conditions: driving without an N-back task, with a
0-back task, with a 1-back task, and with a 2-back task. Dependent
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variables comprised four categories: (1) cognitive load verification
measures (NASA-TLX ratings, pupil diameter, and EDA); (2) driving
performance metrics (lateral driving deviation and throttle control
variability); (3) touchscreen interaction performance (movement
time, error rate, and pointing throughput); and (4) visual attention
allocation (proportional distribution across FoAs, visual distraction
duration, and the proportion of prolonged visual distraction).

Our EDA sensor malfunctioned for one participant under one
N-back condition. Three users experienced a loss of ArUco marker
detection in all of their first-person videos from the Tobii Pro
Glasses 2. We removed the affected trials accordingly.

3.6.4 Statistical Methods. We used the Shapiro-Wilk test [90] to
verify whether model residuals violated normality. The residuals of
NASA-TLX ratings, throttle control variability, and the proportion
of prolonged visual distraction were non-normally distributed,
while other dependent variables did not violate normality.

For normal data, we used linear mixed models (LMM) [106]
for within-subjects designs and linear models (LM) [27] for
between-subject designs. We used Type III F-tests [22] to assess
statistical significance across conditions, followed by post hoc
pairwise comparisons.

For non-normal data, we employed the Friedman test [32] to
examine significance across cognitive load levels, followed by
Wilcoxon signed-rank tests [108] for post hoc pairwise comparisons.

All post hoc tests were protected against Type I errors using
Holm’s sequential Bonferroni procedure [45]. We report means
and standard deviations (SD) for normally distributed variables
and medians and interquartile ranges (IQR) for non-normally
distributed variables.

4 Results

In this section, we present our results, categorized by cognitive
load, driving performance, touchscreen performance, and focus of
attention. Together, these results paint a picture of how cognitive
load affects driving and interacting with a touchscreen, and how
the latter two affect each other.

4.1 Cognitive Load

We analyzed participants’ ratings on the NASA-TLX Likert items,
changes in pupil diameter, and electrodermal activity (EDA) under
different cognitive load conditions to verify that we successfully
manipulated cognitive load. Recall that in our four N-back
conditions, we required participants to complete driving and
touchscreen interaction with no N-back task, with a 0-back task,
with a 1-back task, and with a 2-back task.

4.1.1 NASA-TLX Mental Load. Mental load scores were particularly
high when performing the 2-back task, with the median reaching
16 (IQR = [14.0,17.0]) out of 20. The 1-back task had a median score
of 12.5 (IQR = [8.0,14.25]), followed by the 0-back task at 10 (IQR =
[6.75,12.0]) and the no N-back task setting at 9.5 (IQR = [7.75,11.0]).
There was a statistically significant difference in mental load across
cognitive load conditions (y%(3,N=16) = 27.27, p < .001), as shown
in Figure 4(a). This result reflects participants’ subjective experience
that different N-back tasks imposed different degrees of cognitive
load. Post hoc pairwise comparisons indicated significant mental
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load differences between all pairs of N-back tasks (p < .01), except
between the 0-back task and without any N-back task.

4.1.2  Pupil Diameter and Electrodermal Activity. There were
significant differences in pupil diameter (F(3,45) = 2.68, p < .05)
and EDA (F(3,45) = 3.47, p < .05) across cognitive load conditions,
as is shown in Figures 4(b) - (d). These physiological sensor
signals provide objective evidence that the different cognitive
load conditions did indeed impose varying levels of cognitive
load. Post hoc pairwise comparisons showed similar results as the
self-reported mental load measures. For example, the average pupil
diameter was significantly higher during the 2-back task condition
(p < .05) compared to the baseline no N-back task condition.

The results justify our approach of treating “different cognitive
load levels” as our independent variable rather than simply
“different N-back task conditions.”

4.2 Driving Performance

We first examined how touchscreen interaction affects driving
performance by comparing driving metrics with and without
touchscreen interaction. Subsequently, we investigated driving
performance under different cognitive load levels.

4.2.1 Touchscreen Effects on Driving Performance.

Lateral Deviation from the Road Centerline. Participants
demonstrated 12.6% lower lateral deviation when driving without
touchscreen interaction (M = 0.355m, SD = 0.086m) than with
touchscreen interaction (M = 0.406m, SD = 0.122m). Statistical
analysis revealed a significant difference (F(1,15)=5.22, p < .05),
indicating that touchscreen interaction resulted in greater lateral
deviations from the road centerline. This finding suggests that
engaging with touchscreen interfaces impairs lateral vehicle
control, despite explicit instructions for participants to prioritize
driving safety as their primary task.

Throttle Control Variability. Analysis of throttle control
variability showed comparable median deviations between the
driving with touchscreen interaction condition (Med = 0.052,
IQR = 0.024) and that without touchscreen interaction
(Med = 0.053, IQR = 0.076). A Wilcoxon signed-rank test indicated
no significant difference in throttle control variability between
driving with a touchscreen and driving without a touchscreen.

4.2.2 Cognitive Load Effects on Driving Performance.

Lateral Deviation from the Road Centerline. There was minimal
difference in lateral deviation across different cognitive load
conditions. Results showed no statistically significant effects of
cognitive load on centerline deviation. These results suggest that
driving precision in terms of lateral control was not substantially
compromised by cognitive load.

Throttle Control Variability. The Friedman test indicated no
statistically significant effects of cognitive load on throttle control
variability. These findings parallel our results on lateral deviation,
demonstrating that drivers’ ability to operate the pedal was not
significantly impaired by increasing cognitive loads.
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task conditions, with shading indicating the standard error.

4.3 Touchscreen Pointing Speed and Accuracy

We first compared pointing performance under driving scenarios
with the baseline throughput obtained by seated but non-driving
participants (see Section 3.2.4). We then further analyzed the
movement time, accuracy, and throughput of participants’
touchscreen pointing while driving under different cognitive loads.

4.3.1 Effects of Driving on Touchscreen Pointing.

Speed and Accuracy. The average movement time rapidly
increased from 564 ms (SD = 92) without driving to 1140 ms (SD =
205) with driving. Movement time was statistically significantly
slower under driving conditions (F(1,22) = 56.1, p < .001). Similarly,
error rate increased from 5.6% (SD = 4.0) without driving to 11.6%
(SD = 9.2) with driving. However, due to substantial individual
differences in target selection precision, this difference was not
statistically significant.

Throughput. Without driving, the average throughput was 5.78
bits/s (SD = 0.66), while driving without an N-back task reduced
target selection throughput by 58.1% to 2.42 bits/s (SD = 0.52).
Statistical analysis revealed that this was a significant reduction in
pointing throughput (F(1,22)=187.8, p < .001).

4.3.2  Effects of Cognitive Load on Touchscreen Pointing.

Speed and Accuracy. There was a significant effect of cognitive

load on movement time (F(3,N=45) = 10.13, p < .001), as shown in

Figure 5. Post hoc pairwise comparisons showed during the 2-back
task, the movement time was significantly longer than that without
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Figure 5: Movement time. Error bars represent standard
deviation. ***:p < .001,"":p < .01,":p < .05.

an N-back task (#(45) = 5.41, p < .001), with a 0-back task (#(45) =
-3.592, p < .005), and with a 1-back task (¢(45) = -3.284, p < .01).
As the cognitive load increased, the mean of 1140 ms (SD = 205)
for movement time without an N-back task significantly increased
by 20.2% to 1370 ms (SD = 137) for pointing while performing the
2-back task.

Although increasing cognitive load resulted in increased
movement time, error rates showed no significant difference across
different cognitive load levels. The error rate during the 2-back
task was 12.2% (SD = 9.3%), similar to the 11.6% (SD = 9.2%) under
the no N-back task condition. The large standard deviations
indicate substantial individual differences in pointing accuracy.
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These results suggest that under higher cognitive loads,
participants’ motor systems tended to sacrifice pointing speed
while maintaining pointing accuracy.

Touchscreen Pointing Throughput. A main motivation for this
work was to investigate whether different cognitive loads during
driving influence throughput, the combined speed-accuracy
measure of pointing efficiency produced by Fitts’ law. Figure 6
shows the effect of cognitive load on throughput.

Without an N-back task, throughput was 2.42 bits/s (SD =
0.52). Throughput for the 0-back task was similar (M = 2.37,
SD = 0.48), followed by the 1-back task (M = 2.19, SD = 0.47)
and 2-back task (M = 2.01, SD = 0.32). There was a significant
effect of cognitive load on throughput (F(3,45) = 4.10, p < .05).
Post hoc pairwise comparisons showed that when the cognitive
load was highest (i.e, during the 2-back task), throughput was
significantly lower than without an N-back task (¢(45) = 3.15,
p < .05), and with a 0-back task (¢(45) = 2.76, p < .05). The
standard deviations indicate substantial individual differences in
pointing performance. However, the statistically significant results
demonstrate that performance degradation consistently occurs with
increased cognitive load.

4.4 Focus of Attention

When participants were driving while pointing on the touchscreen,
their visual attention switched repeatedly between the road and
the touchscreen. Based on eye tracking results, we calculated
the distribution of participants’ visual attention, the duration
of each visual distraction, and the proportion of prolonged
visual distractions. We checked if these metrics had significant
associations with cognitive load.

First, we divided foci of attention into on-road gaze, on-screen
gaze, and gaze transitions, as shown in Figure 7. There was no
significant difference in the proportional duration of the three foci of
attention under different cognitive loads. However, as cognitive load
increased, the proportion of participants’ visual attention on the
road increased from 42.8% to 49.8%, with corresponding decreases
in the proportion of gaze time on-screen and in transition.

One possible reason to explain why participants spent a smaller
proportion of time on pointing tasks is that they reduced their
frequency of switching from driving to touchscreen pointing.
Another possibility is that high cognitive load caused participants to
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Figure 7: Proportion of focus of visual attention across
different N-back conditions.

shorten the duration of each focus of attention on the touchscreen
and gaze transition.

Significance testing showed no difference in the frequency of
gaze switches from driving to the screen across different cognitive
loads. Switch frequency ranged from 24.5 times per minute to 27.3
times per minute, with no consistent trend of change as cognitive
load levels increased. Thus, the following paragraphs quantitatively
check the visual distraction duration.
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Figure 8: Mean duration of each visual distraction across
different N-back conditions.

4.4.1 Visual Distraction Duration. As defined earlier, visual
distraction refers to periods in which the driver’s gaze is directed
away from the road toward the touchscreen. As is shown in
Figure 8, there is a significant difference between visual distraction
durations under different cognitive loads (F(3,36) = 12.98, p < .05).
When cognitive load increased, participants’ gaze remained on the
touchscreen for shorter periods before they needed to return
their visual attention to the driving task. Post — hoc pairwise
comparisons showed that with a 2-back task, the mean visual
distraction duration (M = 889 ms, SD = 327) was significantly
shorter (£(36) = 3.52, p < .01) than without a N-back task
(M = 1207 ms, SD = 347).

4.4.2  Prolonged Visual Distraction. N-back taskN-back task The
NHTSA proposed a 2-second rule through a series of quantitative
studies: each visual distraction duration for drivers should be less
than 2 seconds to ensure safe driving [74]. Therefore, we calculated
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the proportion of participants’ visual distractions exceeding 2000
ms to check whether our participants adhered to the 2-second rule.

There is a significant difference in the proportion of prolonged
visual distractions (defined as greater than 2000 ms) under different
cognitive loads (y%(3,N=13) = 9.09, p < .05), shown in Figure 9.
Without a N-back task, 16.0% (SD = 13.3%) of visual distractions

exceeded 2 seconds, which is defined as potentially hazardous [74].

However, with a 1-back or 2-back task, the proportion of prolonged
visual distractions decreased to 9.4% (SD = 9.5) and 7.2% (SD =
6.8), respectively. Post hoc pairwise comparisons revealed that the
proportion of prolonged visual distractions was significantly higher
without the N-back task compared to the condition with a 2-back
task (¢(36) = —3.385, p < .05). High cognitive load reduced visual
distraction duration, but given that participants maintained driving
safety to the same degree under different cognitive loads, a lower
rate of prolonged visual distraction clearly cannot indicate safer
driving.

4.5 Hand-Before-Eye Coordination Patterns

When participants were driving while performing a pointing task on
the touchscreen, their visual attention switched repeatedly between
the road and the touchscreen, while simultaneously executing target
selection hand movements. We analyzed the temporal sequence
between each ballistic hand movement and visual transition to
the touchscreen to examine coordination between participant hand

movements and visual attention allocation, as illustrated in Figure 3.

Unexpectedly, even without an N-back task, ballistic movements
preceded gaze transitions to the touchscreen in 62.9% (SD = 39.6)
of the pointing trials. This "hand-before-eye" pattern remained
consistent across different cognitive load conditions: 64.4% (SD =
35.8) with a 0-back task, 71.9% (SD = 27.2) with a 1-back task,
and 71.1% (SD = 24.6) with a 2-back task. Although there were no
statistically significant differences between conditions, prevalence
of this pattern was consistently high and showed a gradual increase
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with higher cognitive load, suggesting a fundamental adaptation in
motor-visual coordination during multitasking.

4.6 Subjective Measures

There is a significant increase in mental demand (y?(3,N=16) =
27.27), physical demand (x%(3,N=16) = 26.78, p < .001) and time
pressure ("hurried or rushed") ratings (y?(3,N=16) = 20.78, p < .001)
with cognitive load. Participants reported feeling significantly
less successful in task completion as cognitive load increased
(¥?(3,N=16) = 9.87, p < .05). Affective states were similarly
impacted, with participants reporting feeling significantly less in
control (y*(3,N=16) = 8.38, p < .05) and less confident (y?(3,N=16)
= 8.87, p < .05) in their abilities as cognitive load increased.
Despite a higher workload, participants reported feeling more active
(x%(3,N=16) = 8.76, p < .05) during the 2-back condition compared
to easier conditions. These subjective findings complement our
behavioral measures by demonstrating that increased cognitive
load not only impairs touchscreen interaction performance but also
substantially alters drivers’ perceived task load, confidence, and
emotional state during in-vehicle touchscreen interactions.

5 Discussion

The goal of this study was to investigate the impact of cognitive
load on in-vehicle touchscreen interactions and driving behavior.
Our findings reveal that during multitasking involving driving
and touchscreen interaction, these activities mutually affect each
other, degrading their respective performance metrics. Pointing
throughput decreased by 58.1% (Section 4.3.1), while lateral driving
deviation also showed significant changes (Section 4.2.1). Changes
in cognitive load potentially lead to further redistribution of visual-
motor resources during this multitasking, exacerbating these effects.
Although driving performance did not show significant variations
due to our experimental design prioritizing driving safety (Section
4.2.2), pointing throughput significantly decreased by 20.2% as
cognitive load increased (Section 4.3.2). Analyzing the focus of
visual attention, we found that as cognitive load increased, drivers
reduced their visual distraction time by 26.3%, from 1207 ms to
889 ms, when switching from driving to touchscreen interaction
(Section 4.4), potentially reducing the number of target selections
completed during each gaze transition.

In this section, we first discuss how driving and touchscreen
interaction mutually influence each other, then further examine
how increasing cognitive load affects various tasks during
multitasking. We explore interesting behavioral pattern changes
that cognitive load and multitasking induce in users, and propose
several design guidelines for in-vehicle touchscreens.

5.1 Mutual Influence Between Touchscreen
Interaction and Driving

Previous works [38] have investigated how touch interaction
affects driving performance. Our research further validates their
conclusions while demonstrating that this influence actually exists
bidirectionally, regardless of the driver’s cognitive load level.

For driving performance, after touchscreen interaction
was introduced, although throttle control variability showed
no significant change, participants’ steering wheel control
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Figure 10: Participant 6’s Fitts’ law model fit. The black baseline represents tasks completed in a non-driving state.

significantly decreased, with lateral deviation from the road center
increasing from 0.086 m to 0.122 m, revealing the potential dangers
touchscreen interaction poses to driving safety.

In addition, we focused more on examining how driving degrades
touchscreen pointing performance. Pointing throughput decreased
dramatically by 58.1%, indicating that participants were not only
mentally affected by driving but also physically performed clicking
actions much slower.

To explain this phenomenon, we analyzed Fitts’ law models for
individual participants and surprisingly discovered that movement
time no longer exhibited typical sensitivity to the effective index
of difficulty (ID,) across all cognitive loads when driving. As an
example, Figure 10 shows P6’s models. While movement time
increased with rising cognitive load, it remained almost unchanged
with rising ID,. In contrast, P6’s movement time increased with
ID, in the standard Fitts’ law task without driving.

We propose that this phenomenon can be explained by
participants’ ballistic finger movements and visual attention
allocation during pointing actions. As reported in Section 4.5,
even without an N-back task, ballistic movements preceded
gaze transitions to the touchscreen in 62.9% of pointing trials.
This inverted motor-visual sequencing primarily explains the
observed insensitivity of movement time to ID, when driving. In
contrast to standard Fitts’ law paradigms that predominantly
model motor control capabilities, our driving multitasking
paradigm incorporated the process of visual attention-shifting and

target acquisition into the recorded pointing movement time.

These observations align with what we noticed during the
experiment—participants’ finger movements often exhibited
very brief hovering and hesitation during ballistic movement,
transforming the process from a “rapid ballistic movement phase”
into a multi-step process waiting for visual feedback to correct the
motor system. This “hand-before-eye” mechanism also explains
the observation of transient hand-hovering or circling behaviors,
likely representing movement initiation based on prior motor
experience, followed by mid-trajectory pauses awaiting visual
confirmation after target acquisition.

5.2 Impact of Cognitive Load on Touchscreen
Interaction and Driving

Most of our experimental results examined how different cognitive
load levels further affect touchscreen and driving performance.
Participants’ mental resources indeed decreased under high
cognitive load, but they prioritized driving safety, maintaining the
driving performance while touchscreen interaction performance
and the attention allocated to touch interaction significantly
decreased.

For driving itself, we emphasized in instructions that participants
should prioritize driving tasks as if they were actually driving rather
than playing an immersive game. Consequently, driving lateral
deviation and throttle control variability showed no significant
differences, suggesting that participants were maintaining good
driving performance as instructed.

On the other hand, touchscreen pointing performance showed
significant degradation. Our post hoc pairwise comparisons
of pointing throughput revealed that both movement time
per touch and pointing throughput significantly decreased
under high cognitive load. As the cognitive load increased, the
“hand-before-eye” pattern became more pronounced. Under 2-back
conditions, the average single pointing duration even exceeded
each on-screen glance duration, demonstrating participants’
limited visual attention during target selection.

Higher cognitive load led to shorter visual distractions.
Conversely, in the Fitts’ study, pointing time actually increased
as cognitive load increased. This opposite trend resulted in a
reduction in the number of pointing trials participants could
complete during each on-screen gaze period, from 1.30 times
(SD = 0.41) without an N-back task to 1.09 times (SD = 0.66) with
the 2-back task. These findings suggest that higher cognitive load
limited drivers’ ability to maintain prolonged visual attention and
to perform consecutive pointing actions. Additionally, participants
showed reduced engagement with the Fitts’ task under increased
cognitive load, suggesting a constraint on attentional resources.
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As shown in Figure 9, high cognitive load reduced visual
distraction duration, nearly eliminating prolonged distractions
based on the 2-second safety rule. However, since driving safety
remained consistent across load levels, fewer prolonged distractions
do not necessarily indicate safer driving. This suggests the threshold
for unsafe visual distraction may depend on cognitive load.

5.3 Design Guidelines For In-Vehicle Touch
Interfaces

Our findings offer guidelines for designing cognitive load-aware
adaptive touch interfaces. With the increasing availability of
wearable sensors and in-cabin sensing technologies, real-time
cognitive load estimation is becoming feasible. Below, we provide
adaptive strategies based on specific empirical insights from
our study, focusing on motor-visual behavior, physiological and
behavioral cues, and interaction bottlenecks under multitasking
pressure.

Detectable Signals of Cognitive Load via In-Vehicle Sensors.
Beyond traditional physiological indicators such as pupil diameter
and electrodermal activity (EDA), our study highlights a
novel and actionable behavioral signal of cognitive load: the
“hand-before-eye” coordination pattern. Under higher cognitive
load, drivers frequently initiate ballistic hand movements before
shifting their gaze. This anticipatory motor action becomes more
prevalent as cognitive demands increase, suggesting it reflects an
internal sense of time pressure. This behavior can be detected
using lightweight sensing technologies, such as eye-tracking
systems to monitor gaze direction and capacitive touch sensors
on the steering wheel to identify hand-off events. By analyzing
the relative timing between hand departure from the wheel and
subsequent gaze transition to the screen, systems can infer
real-time cognitive load. This approach offers a low-cost, scalable
method for integrating behavioral markers into cognitive load
estimation frameworks.

Adaptive Visual Search Efficiency. Our findings indicate that the
primary bottleneck in touchscreen interaction under high cognitive
load is likely not motor capability but rather the visual search
latency required to locate targets after shifting gaze from the road
to the screen. Increasing button size alone did not significantly
improve performance, suggesting that physical targeting was
not the dominant constraint. This result highlights the need for
adaptive user interfaces that enhance visual saliency rather than
relying solely on target enlargement. For instance, interfaces
can dynamically increase perceptual prominence using contrast
enhancements, ambient lighting adjustments, or subtle animations
to draw attention to actionable elements. During cognitively
demanding moments, systems could also re-prioritize interface
layouts to elevate critical controls while suppressing less relevant
options. Overly dense layouts should be avoided, as they may
elevate search costs even if they optimize for screen space. Taken
together, these findings call for a shift from size-focused designs
to visually optimized interfaces that support fast, accurate target
acquisition under multitasking.

Minimize Multi-Step Interactions During High Cognitive Load.
Under high cognitive load, participants completed only 1.09 to
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1.30 touchscreen interactions per glance, while movement times
increased by 20.2% and visual distraction durations decreased
by 26.4%. These findings indicate that drivers, when cognitively
taxed, are unable to sustain multi-step interaction sequences
within a single attention window. Interaction performance becomes
constrained not by motor ability but by the temporal limits of safe
visual disengagement from the road. To mitigate this limitation,
interface designers should implement adaptive task flattening
strategies that minimize the number of steps required to complete
an interaction. For example, frequently used functions should be
surfaced as one-tap actions when high cognitive load is detected.
Additionally, user interface flows can be dynamically simplified
(e.g., reducing nested menus or multi-stage confirmations) based
on real-time estimates of cognitive demand.

Adaptive Alerts for Prolonged Gaze. The NHTSA’s fixed 2-second
off-road glance threshold is based on the assumption of uniform
attentional capacity across all cognitive states. However, our
findings show that under high cognitive load, drivers’ off-road
glances naturally shorten to an average of 889 ms, reflecting
an implicit self-regulation strategy to maintain driving safety.
This finding suggests that static thresholds may not adequately
account for the dynamic nature of attentional resources. To address
this, future driver-assistance systems should adopt cognitive load-
sensitive thresholds for visual distraction warnings. When high
cognitive load is detected, systems should initiate earlier warnings.

Non-Visual Feedback for Target Acquisition. The observation that
participants’ hands moved for targets before their eyes looked
for those targets indicates they had prior expectations about the
touchscreen and approximate target locations. For touch interaction
tasks, in-vehicle touchscreens can incorporate haptic and audio
feedback as indicators of target selection or provide cues for
target acquisition, thereby reducing visual distraction. For example,
auditory or tactile feedback can serve as click confirmation. Haptic
feedback can also enable the hand to function as a sensor, effectively
giving virtual buttons physical properties [82].

5.4 Generalizing N-back Tasks To Real
Scenarios

Based on four different cognitive load levels in our study, we
can generalize our experimental findings to real-world scenarios
studied in previous research and quantify the cognitive load in
these scenarios [25].

Specifically, driving without a N-back task can directly represent
similar real driving scenarios. The 0-back task, which only involves
hearing and repeating a number, parallels everyday activities such
as listening to music or passive conversation. Our NASA-TLX
mental load measurements and physiological signal analyses
indicated no significant differences in cognitive load between
having no N-back task and the 0-back task. Notably, even in these
relatively low-demand conditions, on a 20-point scale, the mental
load associated with continuous touchscreen interaction remains
moderate (M = 9.5 without an N-back task, M = 10.0 with a 0-back
task), highlighting the need for greater attention to the potential
risks posed by excessive in-vehicle touch interaction.
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The 1-back and 2-back tasks involve moderate and high-intensity
memory functions, information processing, and retrieval, similar
to real-world activities such as texting, phone conversations, or
engaging in intense discussions. We observed a significant increase
in cognitive load under these conditions, along with notable changes
in pointing accuracy, throughput, and visual attention patterns.
These findings suggest that touch interfaces and regulations for
use under moderate to high cognitive load conditions may require
specialized design considerations.

Beyond driving, we expect our results to extend to other high-
demand, touch-based interaction contexts, such as factory operators
monitoring equipment [54], people using phones while moving [59],
surgeons interacting with touchscreen displays [17], or pilots and
performance drivers [95] managing complex controls. In each
context, divided attention similarly degrades touch accuracy and
speed, highlighting the need for adaptive, context-aware interface
designs.

6 Limitations and Future Work

Our study has several limitations that should be acknowledged.
Participants were explicitly instructed to prioritize driving safety
over touchscreen performance. While realistic, this instruction may
have constrained our observations of trade-offs between driving
and touchscreen tasks under varying cognitive loads. Moreover,
even under low cognitive load, inattention remains dangerous—
a concern that will grow as driving automation alters attention
allocation.

Although our high-fidelity simulator afforded precise control
over task parameters, it inevitably falls short of capturing the
full complexity and emotional stakes of real-world driving. We
simplified the scenario (minimal interactions, no other cars or
pedestrians) to reduce extraneous variability, yet this choice limits
ecological validity. Likewise, our ring-of-circle target arrangements,
while convenient for controlled analysis, does not reflect the various
layouts and presentations of production vehicle interfaces. Future
research should embrace more naturalistic designs, for example
by incorporating traffic lights, dynamic road scenarios, rich UI
elements, and immersive settings (e.g., virtual reality, instrumented
test tracks, a Drive-In Lab system [53]) to observe how drivers
spontaneously allocate attention when mental demands are high.

Our multidimensional cognitive load assessment, which paired
subjective (NASA-TLX) and physiological (pupil diameter and EDA)
measures, provided complementary insights but was not without
its challenges. EDA signals suffered noise from steering and hand
movements, and pupil measurements are sensitive to ambient
lighting. Integrating additional neural measures such as functional
near-infrared spectroscopy (fNIRS) [29] or electroencephalography
(EEG) [1] could provide more precise correlates of cognitive load.

Looking ahead, another promising avenue for future research is
to examine individuals with extensive multitasking training, such as
professional pilots or emergency response operators. These experts
are known to operate effectively under high cognitive loads while
performing complex tasks. Comparing their performance to that
of general drivers could help isolate whether the performance
degradation observed in touchscreen interactions and driving

Shen, X. and Hwang, S. et al.

behavior is primarily driven by the inherent cognitive load or by
limited multitasking ability.

Finally, our findings suggest potential benefits from cognitive
load-aware interfaces, but we have not yet implemented or
tested such adaptive systems. Future work should develop and
evaluate interfaces that dynamically adjust based on detected
cognitive load levels. These systems could incorporate real-time
monitoring of physiological signals, hand and eye movements, or
certain driving behaviors to dynamically modify interface elements,
information density, presentation style, animation timing, and
feedback modalities. User studies could assess how drivers respond
to such adaptive interfaces over time and whether these interfaces
enhance both safety and user experience.

7 Conclusion

This study quantifies how cognitive load affects drivers’
touchscreen interactions and visual attention. It also quantifies
how interacting with a touchscreen affects driving performance,
and how driving affects touchscreen performance. We
manipulated cognitive load using an auditory N-back task and
verified successful manipulation through subjective responses,
physiological responses, and interaction measurements. The
concurrent performance of driving and touchscreen tasks
demonstrates significant mutual interference, with driving causing
a 58.1% reduction in pointing throughput and touchscreen use
resulting in a 41.9% increase in lateral vehicle deviation. Higher
cognitive loads significantly affected touchscreen interaction
efficiency, with movement time increasing by 20.2% in the highest
cognitive load condition and throughput decreasing by 16.9%, from
2.42 bits/s to 2.01 bits/s. Pointing accuracy was maintained at the
expense of speed, resulting in this lower throughput. Drivers
naturally adapted their visual strategies under increased cognitive
load, reducing visual distraction durations by 26.4%, suggesting
instinctive preservation of the primary driving task by limiting
visual engagement with secondary tasks when cognitive resources
were constrained. We observed more prolonged visual distractions
under low cognitive loads, potentially creating safety risks despite
drivers’ perceived attentional capacity. A “hand-before-eye”
movement pattern, where ballistic movements of the hand
preceded gaze transitions, occurred in 71.9% of movements,
offering an opportunity for low-cost detection of cognitive load
levels.

This research advances our understanding of driver-touchscreen
interactions and informs potentially safer in-vehicle interface
designs by quantifying how cognitive load affects the interplay
between cognitive demands, visual attention, and motor
performance during driving and touchscreen pointing tasks.
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A APPENDIX: FEASIBILITY STUDY

We ran an initial feasibility study to test our ability to induce
cognitive load and measure related changes in physiological arousal
in a task that involved driving-like movements (i.e., wheel and pedal
adjustments). We additionally did not constrain head movements
or control for luminance, factors that can introduce artifacts
into measures of physiological arousal (e.g., pupils, electrodermal
activity). We ran a version of the box task [72, 97], a task introduced
as a more robust and generalizable alternative to the lane-change
task [68] for research on distracted driving. During this task we
manipulated participants’ cognitive load while recording motor
movements (steering wheel and pedal positions) and levels of
physiological arousal via pupillometry and measures of EDA.

A.1 Participants

Twenty-four participants (12 identifying as women, 12 identifying
as men) were recruited from the local community. Participants were
all above 18 years of age, had valid drivers’ licenses (median 19
years of driving experience), and normal or corrected-to-normal
vision. Data from three participants were omitted: two participants
fell asleep during the task, and the eyetracker would not work for
another. These participants’ data were omitted before any data
analysis. The study design was reviewed and approved by an
institutional review board, and all participants provided informed
consent.

a Box Task

(Trommler et al., 2021)
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Figure 11: (a) Box task. (b) Auditory N-back task.
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A.2 Materials and Methods

A.2.1  Box Task. We implemented a version of the Box Task [97]
on a desktop computer connected to a 27" LCD monitor and a
Logitech G29 Driving Force racing wheel and pedal setup. In this
task, participants use the steering wheel and pedals to control the
size and position of a square on a computer screen (Figure 11a). The
goal of the Box Task is to position a blue square between a larger
and smaller yellow square, such that the edges of the blue square do
not move outside the boundary of the larger square or within the
boundary of the smaller square. Throughout the task, the lateral
position of the blue square slowly drifts left or right at a rate of
0.010 Hz. Concurrently, the size of the blue square drifts such that
it grows or shrinks at a slightly faster rate of 0.125 Hz (for exact
function controlling box position and size, refer to [97]). To keep the
blue square in the goal position, participants turn the steering wheel
to counteract the lateral drift and press either the accelerator or
brake pedal to increase or decrease the size of square, respectively.
Participants were given a series of instructions, practice trials, and
a practice test to ensure that they understood the controls and the
goal of the task before starting the main experiment.

A.2.2  Auditory N-back Task. Cognitive load was manipulated by
having participants perform an auditory N-back task. In this task,
participants heard an auditory sequence of numeric digits between 1
and 4 played in noise-canceling headphones and were asked to make
a response using paddles at the back of the steering wheel based
on numbers they heard n trials back. There were three conditions:

e 0-back: press any paddle when a number is heard.

o 1-back: press paddle to indicate whether the current number
is the same or different from the number heard on the
previous trial.

e 2-back: press paddle to indicate whether the current number
is the same or different from the number heard 2 trials back.

Because we only required same/different responses (rather than
repeating the number head N-trials back), we restricted the number
of digits to 4 to ensure a higher probability of "same” occurrences
in the 1- and 2-back conditions (and avoiding high accuracy for
simply answering “different” on every trial).

Participants completed blocks of N-back trials while
concurrently performing the box task. Each block consisted of a
sequence of 10 numbers with a 2.5-second inter-stimulus interval.
Two seconds before the start of the block, text appeared above the
large yellow square indicating the N-back condition that would
follow. During the N-back trials, text appeared to the left and right
of the large square indicating which paddle was to be pressed
for “"same” and “different” responses. The response order was
randomized between N-back blocks.

Participants completed a total of 15 blocks of N-back trials (5
blocks of each N-back level, with the order randomized between
participants). A 20-second break was given between each block of
N-back trials.

A.2.3  Physiological measures. As participants completed the box
task and N-back task, we recorded participants’ gaze, pupil
diameter, and EDA. Eye tracking was done with a desk-mounted
EyeLink 1000+ (SR Research) with the Remote Camera upgrade
to allow participants to move their head freely. Gaze and pupil
diameter were recorded at 500 Hz. EDA was recorded using an
Empatica E4 wristband sampling at 4 Hz.
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A.2.4 Data Processing and Analysis. Pupil data were processed
using a standard pupil processing pipeline [51]. Artifacts from
blinks were removed from the pupil trace and missing samples were
linearly interpolated. The pupil signal was then passed through
a low-pass filter with a 10 Hz cutoff and the residual effects of
blinks and saccades were removed using the FIRDeconvolution
library [51]. Last, pupils were Z-scored within participants. For our
subsequent analysis, pupil diameter during each N-back block was
subtracted from a baseline period (2-second period before the start
of the N-back block; Figure 14).

EDA was processed using the pyEDA package [2]. The raw EDA

signal was decomposed into both tonic and phasic components.

Similar to pupils, to assess changes in EDA induced by different
levels of cognitive load, we subtracted baseline EDA recoded 2
seconds prior to each block from the EDA signal recorded during
each N-back block.

A.3 Results

N-back Task Performance
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Figure 12: Participant response times and proportion correct
scores on the N-back task. Accuracy is omitted for 0-back
because there were no correct or incorrect responses. Bars
indicate means and error bars indicate on standard error of
the mean. ***:p < .001.

A.3.1 Performance decreases as N-back difficulty increases. To
ensure that our cognitive load manipulation had the desired effect,
we examined whether participant response times increased and
accuracy decreased, with an increase in n on the N-back task. As
expected, participants responded more slowly and less accurately
as n increased (Wilcoxon signed-rank tests measuring differences in
response times between N-back conditions: all p < .004; difference
in accuracy between 1-back and 2-back: p < .001; Figure 12). These
results indicate that participants experienced more cognitive load
with greater n.
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A.3.2 Cognitive load increases tonic physiological arousal. We
next examined whether our cognitive load induction influenced
physiological arousal responses measured by pupil diameter and
EDA. Cognitive load had a robust influence on pupil diameter. As N-

back increased, so too did average pupil diameter, with a particularly
large difference in the 2-back condition compared to 0-back and

1-back (linear mixed effects model with random intercepts for each
participant contrasting mean baseline-corrected pupil diameter
between N-back conditions: 1-back vs 0-back: = 0.30, p = .005;
2-back vs 0-back: f = 0.93, p < .001; 2-back vs 1-back: f = 0.63,
p < .001; Figure 14a,b).

Cognitive load has a similar but less pronounced effect on slower,
tonic changes in EDA (Figure 14c,d). Average changes in tonic EDA
from baseline were higher in the 2-back compared to the 0-back
task (f = 0.35,p < .001), but only marginally higher in the 2-
back compared to the 1-back (f = 0.18,p = .079). There was no
significant difference in tonic EDA between the 1-back and 0-back
blocks (B = 0.17, p = .107). There were additionally no differences
in average phasic EDA across N-back conditions (all |f|s< 0.14, all
ps> .206).

Influence of Cognitive Load on
Box Task Performance
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Physiological Responses to Cognitive Load
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A.3.3  Cognitive load has little impact on Box Task performance. We
last explored whether increased cognitive load could be detected
on the performance metrics of the box task. Overall, participant
performance was quite high irrespective of cognitive load, with very
few explicit positional errors (i.e., where the blue square touched
either yellow square) committed across the experiment (median
proportion time spent with blue square in error state [standard
error of the mean] — 0-back: 0.014 [0.005], 1-back: 0.016 [0.010],
2-back: 0.025 [0.013]; signed rank tests comparing positional error
rates across N-back conditions — all ps> .118).

Cognitive load had a small but inconsistent impact of people’s
ability to position the blue square in the goal position, even if
explicit positional errors were low (Figure 13). As cognitive load
increased, the absolute center position of the blue square tended
to drift away from the center of the screen (linear mixed effects
model contrasting the influence of different N-back conditions on
log absolute lateral deviation from center — 1-back vs 0-back:
B =0.09, p = 0.038; 2-back vs 0-back: f = 0.20,p < .001; 2-back
vs 1-back: f = 0.11,p = .013). However, cognitive load did not
have a consistent influence on the variability of the blue square’s
position on the screen, measured by the average standard deviation

of the square’s position on the screen. Variability was slightly
higher in the 2-back vs the 1-back condition (linear mixed effects
model contrasting log standard deviation of square position across
different N-back conditions — 2-back vs 1-back: f# = 0.85, p = .034)
but no different than the 0-back condition (f = 0.50, p = .208) or
between the 1-back and 0-back conditions (f = 0.34,p = .388;
Figure 13).

Cognitive load had less of an impact on people’s ability to adjust
the size of the blue square with the accelerator and brake pedals. We
first measured people’s tendency to let the size of the square drift
away from its size at the start of the task, the optimal size to keep
the square away from the edges of the yellow squares. Cognitive
load did not influence participants’ tendency to let the size of the
square drift farther from the optimal size (linear mixed effects model
contrasting log absolute deviation in square size compared to the
start of the task — all |f|s< 2.6, all ps> .365; Figure 13). Variability
in the size of the square did differ between N-back conditions, but
not consistently with cognitive load. Size variability was higher in
the 2-back condition compared the 1-back conditions, but not the
0-back condition and size variability was higher in the 0-back than
the 1-back condition (linear mixed effects model contrasting log
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standard deviation of square size across N-back conditions: 2—-back
vs 1-back: f =0.17,p < .001; 2-back vs 0-back: f = 0.07,p = .117;
0-back vs 1-back: f = 0.09, p = .047; Figure 13).

A.4 Discussion

The purpose of our feasibility study was to explore our ability
to modulate cognitive load and explore its effects of different
physiological responses and driving-related behaviors. Overall we
successfully induced cognitive load with a N-back task as measured
by increases in response times and decreases in accuracy in higher
N-back conditions (Figure 12). We also found that cognitive load
increased tonic arousal as measured by mean changes in pupil
diameter and similar, albeit less pronounced changes in tonic EDA
signals (Figure 14).

However, cognitive load had less of an influence on actual box
task performance. Participants kept the blue square a little farther
from the center and were slightly more variable with their steering
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wheel input as cognitive load increased. However, pedal interactions
were less affected (Figure 13).

Previous studies using the box task and cognitive load
manipulations add a tertiary Detection Response Task (DRT) in
which a participant is required to provide a response (e.g., button
press) to an unpredictable stimulus (e.g., haptic feedback) [72].
These studies find that cognitive load has a more robust influence
on metrics of the DRT (e.g., response times, accuracy) than simple
driving metrics. These results support the cognitive control
hypothesis [24], which predicts that cognitive load primarily
impairs motor responses that require higher cognitive control (e.g.,
responses to unpredictable stimuli) but not responses that are more
automatic (e.g., standard steering wheel adjustments). This would
suggest that efforts to detect and mitigate the effects of cognitive
load on driving should likely focus on physiological measurements
(e.g., pupils, EDA, eye-movements) and performance on tasks
conducted while driving that require greater cognitive control (e.g.,
touch screen interactions).
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